zephyr/soc/xtensa/intel_s1000/soc_mp.c

205 lines
5.4 KiB
C

/*
* Copyright (c) 2018-2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <device.h>
#include <init.h>
#include <kernel.h>
#include <kernel_structs.h>
#include <sys/sys_io.h>
#include <sys/__assert.h>
#include <logging/log.h>
LOG_MODULE_REGISTER(soc_mp, CONFIG_SOC_LOG_LEVEL);
#include "soc.h"
#include "memory.h"
#ifdef CONFIG_SCHED_IPI_SUPPORTED
#include <drivers/ipm.h>
#include <ipm/ipm_cavs_idc.h>
static const struct device *idc;
#endif
extern void __start(void);
struct cpustart_rec {
uint32_t cpu;
arch_cpustart_t fn;
char *stack_top;
void *arg;
uint32_t vecbase;
uint32_t alive;
/* padding to cache line */
uint8_t padding[XCHAL_DCACHE_LINESIZE - 6 * 4];
};
static __aligned(XCHAL_DCACHE_LINESIZE)
struct cpustart_rec start_rec;
static void *mp_top;
static void mp_entry2(void)
{
volatile int ps, ie;
/* Copy over VECBASE from the main CPU for an initial value
* (will need to revisit this if we ever allow a user API to
* change interrupt vectors at runtime). Make sure interrupts
* are locally disabled, then synthesize a PS value that will
* enable them for the user code to pass to irq_unlock()
* later.
*/
__asm__ volatile("rsr.PS %0" : "=r"(ps));
ps &= ~(PS_EXCM_MASK | PS_INTLEVEL_MASK);
__asm__ volatile("wsr.PS %0" : : "r"(ps));
ie = 0;
__asm__ volatile("wsr.INTENABLE %0" : : "r"(ie));
__asm__ volatile("wsr.VECBASE %0" : : "r"(start_rec.vecbase));
__asm__ volatile("rsync");
/* Set up the CPU pointer. */
_cpu_t *cpu = &_kernel.cpus[start_rec.cpu];
__asm__ volatile(
"wsr." CONFIG_XTENSA_KERNEL_CPU_PTR_SR " %0" : : "r"(cpu));
#ifdef CONFIG_IPM_CAVS_IDC
/* Interrupt must be enabled while running on current core */
irq_enable(XTENSA_IRQ_NUMBER(DT_IRQN(DT_INST(0, intel_cavs_idc))));
#endif /* CONFIG_IPM_CAVS_IDC */
start_rec.alive = 1;
SOC_DCACHE_FLUSH(&start_rec, sizeof(start_rec));
start_rec.fn(start_rec.arg);
#if CONFIG_MP_NUM_CPUS == 1
/* CPU#1 can be under manual control running custom functions
* instead of participating in general thread execution.
* Put the CPU into idle after those functions return
* so this won't return.
*/
for (;;) {
k_cpu_idle();
}
#endif
}
/* Defines a locally callable "function" named mp_stack_switch(). The
* first argument (in register a2 post-ENTRY) is the new stack pointer
* to go into register a1. The second (a3) is the entry point.
* Because this never returns, a0 is used as a scratch register then
* set to zero for the called function (a null return value is the
* signal for "top of stack" to the debugger).
*/
void mp_stack_switch(void *stack, void *entry);
__asm__("\n"
".align 4 \n"
"mp_stack_switch: \n\t"
"entry a1, 16 \n\t"
"movi a0, 0 \n\t"
"jx a3 \n\t");
/* Carefully constructed to use no stack beyond compiler-generated ABI
* instructions. Stack pointer is pointing to __stack at this point.
*/
void z_mp_entry(void)
{
mp_stack_switch(mp_top, mp_entry2);
}
void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
arch_cpustart_t fn, void *arg)
{
volatile struct soc_dsp_shim_regs *dsp_shim_regs =
(volatile struct soc_dsp_shim_regs *)SOC_DSP_SHIM_REG_BASE;
volatile struct soc_global_regs *soc_glb_regs =
(volatile struct soc_global_regs *)SOC_S1000_GLB_CTRL_BASE;
uint32_t vecbase;
__ASSERT(cpu_num == 1, "Intel S1000 supports only two CPUs!");
/* Setup data to boot core #1 */
__asm__ volatile("rsr.VECBASE %0\n\t" : "=r"(vecbase));
start_rec.cpu = cpu_num;
start_rec.fn = fn;
start_rec.stack_top = Z_THREAD_STACK_BUFFER(stack) + sz;
start_rec.arg = arg;
start_rec.vecbase = vecbase;
start_rec.alive = 0;
mp_top = Z_THREAD_STACK_BUFFER(stack) + sz;
SOC_DCACHE_FLUSH(&start_rec, sizeof(start_rec));
#ifdef CONFIG_SCHED_IPI_SUPPORTED
idc = device_get_binding(DT_LABEL(DT_INST(0, intel_cavs_idc)));
#endif
/*
* SoC Boot ROM has hard-coded address for boot vector in LP-SRAM,
* and will jump unconditionally to it. So power up the LP-SRAM
* and set the vector.
*/
sys_write32(0x0, SOC_L2RAM_LOCAL_MEM_REG_LSPGCTL);
*((uint32_t *)LPSRAM_BOOT_VECTOR_ADDR) = (uint32_t)__start;
/* Disable power gating for DSP core #cpu_num */
dsp_shim_regs->pwrctl |= SOC_PWRCTL_DISABLE_PWR_GATING_DSP1;
/*
* Since we do not know the status of the core,
* power it down and force it into reset and stall.
*/
soc_glb_regs->cavs_dsp1power_control |=
SOC_S1000_GLB_CTRL_DSP1_PWRCTL_CRST |
SOC_S1000_GLB_CTRL_DSP1_PWRCTL_CSTALL;
soc_glb_regs->cavs_dsp1power_control &=
~SOC_S1000_GLB_CTRL_DSP1_PWRCTL_SPA;
/* Wait for core power down */
while ((soc_glb_regs->cavs_dsp1power_control &
SOC_S1000_GLB_CTRL_DSP1_PWRCTL_CPA) != 0) {
};
/* Now power up the core */
soc_glb_regs->cavs_dsp1power_control |=
SOC_S1000_GLB_CTRL_DSP1_PWRCTL_SPA;
/* Wait for core power up*/
while ((soc_glb_regs->cavs_dsp1power_control &
SOC_S1000_GLB_CTRL_DSP1_PWRCTL_CPA) == 0) {
};
/* Then step out of reset, and un-stall */
soc_glb_regs->cavs_dsp1power_control &=
~SOC_S1000_GLB_CTRL_DSP1_PWRCTL_CRST;
soc_glb_regs->cavs_dsp1power_control &=
~SOC_S1000_GLB_CTRL_DSP1_PWRCTL_CSTALL;
do {
SOC_DCACHE_INVALIDATE(&start_rec, sizeof(start_rec));
} while (start_rec.alive == 0);
}
#ifdef CONFIG_SCHED_IPI_SUPPORTED
FUNC_ALIAS(soc_sched_ipi, arch_sched_ipi, void);
void soc_sched_ipi(void)
{
if (likely(idc != NULL)) {
ipm_send(idc, 0, IPM_CAVS_IDC_MSG_SCHED_IPI_ID,
IPM_CAVS_IDC_MSG_SCHED_IPI_DATA, 0);
}
}
#endif