zephyr/drivers/i2s/i2s_cavs.c

801 lines
19 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/** @file
* @brief I2S bus (SSP) driver for Intel CAVS.
*
* Limitations:
* - DMA is used in simple single block transfer mode (with linked list
* enabled) and "interrupt on full transfer completion" mode.
*/
#include <errno.h>
#include <string.h>
#include <misc/__assert.h>
#include <kernel.h>
#include <device.h>
#include <init.h>
#include <dma.h>
#include <i2s.h>
#include <soc.h>
#include "i2s_cavs.h"
#define LOG_DOMAIN dev_i2s_cavs
#define LOG_LEVEL CONFIG_I2S_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#ifdef CONFIG_DCACHE_WRITEBACK
#define DCACHE_INVALIDATE(addr, size) \
{ dcache_invalidate_region(addr, size); }
#define DCACHE_CLEAN(addr, size) \
{ dcache_writeback_region(addr, size); }
#else
#define DCACHE_INVALIDATE(addr, size) \
do { } while (0)
#define DCACHE_CLEAN(addr, size) \
do { } while (0)
#endif
#define CAVS_SSP_WORD_SIZE_BITS_MIN 4
#define CAVS_SSP_WORD_SIZE_BITS_MAX 32
#define CAVS_SSP_WORD_PER_FRAME_MIN 1
#define CAVS_SSP_WORD_PER_FRAME_MAX 8
struct queue_item {
void *mem_block;
size_t size;
};
/* Minimal ring buffer implementation:
* buf - holds the pointer to Queue items
* len - Max number of Queue items that can be referenced
* head - current write index number
* tail - current read index number
*/
struct ring_buf {
struct queue_item *buf;
u16_t len;
u16_t head;
u16_t tail;
};
/* This indicates the Tx/Rx stream. Most members of the stream are
* self-explanatory except for sem.
* sem - This is initialized to CONFIG_I2S_CAVS_TX_BLOCK_COUNT. If at all
* mem_block_queue gets filled with the MAX blocks configured, this semaphore
* ensures nothing gets written into the mem_block_queue before a slot gets
* freed (which happens when a block gets read out).
*/
struct stream {
s32_t state;
struct k_sem sem;
u32_t dma_channel;
struct dma_config dma_cfg;
struct i2s_config cfg;
struct ring_buf mem_block_queue;
void *mem_block;
bool last_block;
int (*stream_start)(struct stream *,
volatile struct i2s_cavs_ssp *const, struct device *);
void (*stream_disable)(struct stream *,
volatile struct i2s_cavs_ssp *const, struct device *);
void (*queue_drop)(struct stream *);
};
struct i2s_cavs_config {
struct i2s_cavs_ssp *regs;
struct i2s_cavs_mn_div *mn_regs;
u32_t irq_id;
void (*irq_config)(void);
};
/* Device run time data */
struct i2s_cavs_dev_data {
struct device *dev_dma;
struct stream tx;
};
#define DEV_NAME(dev) ((dev)->config->name)
#define DEV_CFG(dev) \
((const struct i2s_cavs_config *const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct i2s_cavs_dev_data *const)(dev)->driver_data)
static struct device *get_dev_from_dma_channel(u32_t dma_channel);
static void dma_tx_callback(struct device *, u32_t, int);
static void tx_stream_disable(struct stream *,
volatile struct i2s_cavs_ssp *const, struct device *);
static inline u16_t modulo_inc(u16_t val, u16_t max)
{
val++;
return (val < max) ? val : 0;
}
/*
* Get data from the queue
*/
static int queue_get(struct ring_buf *rb, u8_t mode, void **mem_block,
size_t *size)
{
unsigned int key;
key = irq_lock();
/* In case of ping-pong mode, the buffers are not freed after
* reading. They are fixed in size. Another thread will populate
* the pong buffer while the ping buffer is being read out and
* vice versa. Hence, we just need to keep reading from buffer0
* (ping buffer) followed by buffer1 (pong buffer) and the same
* cycle continues.
*
* In case of non-ping-pong modes, each buffer is freed after it
* is read. The tail pointer will keep progressing depending upon
* the reads. The head pointer will move whenever there's a write.
* If tail equals head, it would mean we have read everything there
* is and the buffer is empty.
*/
if (rb->tail == rb->head) {
if ((mode & I2S_OPT_PINGPONG) == I2S_OPT_PINGPONG) {
/* Point back to the first element */
rb->tail = 0;
} else {
/* Ring buffer is empty */
irq_unlock(key);
return -ENOMEM;
}
}
*mem_block = rb->buf[rb->tail].mem_block;
*size = rb->buf[rb->tail].size;
rb->tail = modulo_inc(rb->tail, rb->len);
irq_unlock(key);
return 0;
}
/*
* Put data in the queue
*/
static int queue_put(struct ring_buf *rb, u8_t mode, void *mem_block,
size_t size)
{
u16_t head_next;
unsigned int key;
key = irq_lock();
head_next = rb->head;
head_next = modulo_inc(head_next, rb->len);
/* In case of ping-pong mode, the below comparison incorrectly
* leads to complications as the buffers are always predefined.
* Hence excluding ping-pong mode from this comparison.
*/
if ((mode & I2S_OPT_PINGPONG) != I2S_OPT_PINGPONG) {
if (head_next == rb->tail) {
/* Ring buffer is full */
irq_unlock(key);
return -ENOMEM;
}
}
rb->buf[rb->head].mem_block = mem_block;
rb->buf[rb->head].size = size;
rb->head = head_next;
irq_unlock(key);
return 0;
}
static int start_dma(struct device *dev_dma, u32_t channel,
struct dma_config *cfg, void *src, void *dst,
u32_t blk_size)
{
int ret;
struct dma_block_config blk_cfg = {
.block_size = blk_size,
.source_address = (u32_t)src,
.dest_address = (u32_t)dst,
};
cfg->head_block = &blk_cfg;
ret = dma_config(dev_dma, channel, cfg);
if (ret < 0) {
LOG_ERR("dma_config failed: %d", ret);
return ret;
}
ret = dma_start(dev_dma, channel);
if (ret < 0) {
LOG_ERR("dma_start failed: %d", ret);
}
return ret;
}
/* This function is executed in the interrupt context */
static void dma_tx_callback(struct device *dev_dma, u32_t channel, int status)
{
struct device *dev = get_dev_from_dma_channel(channel);
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
struct stream *strm = &dev_data->tx;
size_t mem_block_size;
int ret;
__ASSERT_NO_MSG(strm->mem_block != NULL);
if ((strm->cfg.options & I2S_OPT_PINGPONG) != I2S_OPT_PINGPONG) {
/* All block data sent */
k_mem_slab_free(strm->cfg.mem_slab, &strm->mem_block);
strm->mem_block = NULL;
}
/* Stop transmission if there was an error */
if (strm->state == I2S_STATE_ERROR) {
LOG_DBG("TX error detected");
goto tx_disable;
}
/* Stop transmission if we were requested */
if (strm->last_block) {
strm->state = I2S_STATE_READY;
goto tx_disable;
}
/* Prepare to send the next data block */
ret = queue_get(&strm->mem_block_queue, strm->cfg.options,
&strm->mem_block, &mem_block_size);
if (ret < 0) {
if (strm->state == I2S_STATE_STOPPING) {
strm->state = I2S_STATE_READY;
} else {
strm->state = I2S_STATE_ERROR;
}
goto tx_disable;
}
k_sem_give(&strm->sem);
/* Assure cache coherency before DMA read operation */
DCACHE_CLEAN(strm->mem_block, mem_block_size);
ret = start_dma(dev_data->dev_dma, strm->dma_channel, &strm->dma_cfg,
strm->mem_block, (void *)&(ssp->ssd),
mem_block_size);
if (ret < 0) {
LOG_DBG("Failed to start TX DMA transfer: %d", ret);
goto tx_disable;
}
return;
tx_disable:
tx_stream_disable(strm, ssp, dev_data->dev_dma);
}
static int i2s_cavs_configure(struct device *dev, enum i2s_dir dir,
struct i2s_config *i2s_cfg)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
volatile struct i2s_cavs_mn_div *const mn_div = dev_cfg->mn_regs;
u8_t num_words = i2s_cfg->channels;
u8_t word_size_bits = i2s_cfg->word_size;
u8_t word_size_bytes;
u32_t bit_clk_freq, mclk;
struct stream *strm;
u32_t ssc0;
u32_t ssc1;
u32_t ssc2;
u32_t ssc3;
u32_t sspsp;
u32_t sspsp2;
u32_t sstsa;
u32_t ssrsa;
u32_t ssto;
u32_t ssioc = 0;
u32_t mdiv;
u32_t i2s_m = 0;
u32_t i2s_n = 0;
u32_t frame_len = 0;
bool inverted_frame = false;
if (dir == I2S_DIR_TX) {
strm = &dev_data->tx;
} else {
LOG_ERR("TX direction must be selected");
return -EINVAL;
}
if (strm->state != I2S_STATE_NOT_READY &&
strm->state != I2S_STATE_READY) {
LOG_ERR("invalid state");
return -EINVAL;
}
if (i2s_cfg->frame_clk_freq == 0) {
strm->queue_drop(strm);
(void)memset(&strm->cfg, 0, sizeof(struct i2s_config));
strm->state = I2S_STATE_NOT_READY;
return 0;
}
if (word_size_bits < CAVS_SSP_WORD_SIZE_BITS_MIN ||
word_size_bits > CAVS_SSP_WORD_SIZE_BITS_MAX) {
LOG_ERR("Unsupported I2S word size");
return -EINVAL;
}
if (num_words < CAVS_SSP_WORD_PER_FRAME_MIN ||
num_words > CAVS_SSP_WORD_PER_FRAME_MAX) {
LOG_ERR("Unsupported words per frame number");
return -EINVAL;
}
memcpy(&strm->cfg, i2s_cfg, sizeof(struct i2s_config));
/* reset SSP settings */
/* sscr0 dynamic settings are DSS, EDSS, SCR, FRDC, ECS */
ssc0 = SSCR0_MOD | SSCR0_PSP | SSCR0_RIM | SSCR0_TIM;
/* sscr1 dynamic settings are SFRMDIR, SCLKDIR, SCFR */
ssc1 = SSCR1_TTE | SSCR1_TTELP | SSCR1_RWOT | SSCR1_TRAIL;
/* sscr2 dynamic setting is LJDFD */
ssc2 = SSCR2_SDFD | SSCR2_TURM1;
/* sscr3 dynamic settings are TFT, RFT */
ssc3 = 0;
/* sspsp dynamic settings are SCMODE, SFRMP, DMYSTRT, SFRMWDTH */
sspsp = 0;
/* sspsp2 no dynamic setting */
sspsp2 = 0x0;
/* ssto no dynamic setting */
ssto = 0x0;
/* sstsa dynamic setting is TTSA, set according to num_words */
sstsa = SSTSA_TXEN | BIT_MASK(num_words);
/* ssrsa dynamic setting is RTSA, set according to num_words */
ssrsa = SSRSA_RXEN | BIT_MASK(num_words);
if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) {
/* set BCLK mode as slave */
ssc1 |= SSCR1_SCLKDIR;
} else {
/* enable BCLK output */
ssioc = SSIOC_SCOE;
}
if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE) {
/* set WCLK mode as slave */
ssc1 |= SSCR1_SFRMDIR;
}
ssioc |= SSIOC_SFCR;
/* clock signal polarity */
switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) {
case I2S_FMT_CLK_NF_NB:
break;
case I2S_FMT_CLK_NF_IB:
sspsp |= SSPSP_SCMODE(2);
inverted_frame = true; /* handled later with format */
break;
case I2S_FMT_CLK_IF_NB:
break;
case I2S_FMT_CLK_IF_IB:
sspsp |= SSPSP_SCMODE(2);
inverted_frame = true; /* handled later with format */
break;
default:
LOG_ERR("Unsupported Clock format");
return -EINVAL;
}
mclk = soc_get_ref_clk_freq();
bit_clk_freq = i2s_cfg->frame_clk_freq * word_size_bits * num_words;
/* BCLK is generated from MCLK - must be divisible */
if (mclk % bit_clk_freq) {
LOG_INF("MCLK/BCLK is not an integer, using M/N divider");
/*
* Simplification: Instead of calculating lowest values of
* M and N, just set M and N as BCLK and MCLK respectively
* in 0.1KHz units
* In addition, double M so that it can be later divided by 2
* to get an approximately 50% duty cycle clock
*/
i2s_m = (bit_clk_freq << 1) / 100;
i2s_n = mclk / 100;
/* set divider value of 1 which divides the clock by 2 */
mdiv = 1;
/* Select M/N divider as the clock source */
ssc0 |= SSCR0_ECS;
} else {
mdiv = (mclk / bit_clk_freq) - 1;
}
/* divisor must be within SCR range */
if (mdiv > (SSCR0_SCR_MASK >> 8)) {
LOG_ERR("Divisor is not within SCR range");
return -EINVAL;
}
/* set the SCR divisor */
ssc0 |= SSCR0_SCR(mdiv);
/* format */
switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) {
case I2S_FMT_DATA_FORMAT_I2S:
ssc0 |= SSCR0_FRDC(i2s_cfg->channels);
/* set asserted frame length */
frame_len = word_size_bits;
/* handle frame polarity, I2S default is falling/active low */
sspsp |= SSPSP_SFRMP(!inverted_frame);
break;
case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED:
ssc0 |= SSCR0_FRDC(i2s_cfg->channels);
/* LJDFD enable */
ssc2 &= ~SSCR2_LJDFD;
/* set asserted frame length */
frame_len = word_size_bits;
/* LEFT_J default is rising/active high, opposite of I2S */
sspsp |= SSPSP_SFRMP(inverted_frame);
break;
case I2S_FMT_DATA_FORMAT_PCM_SHORT:
case I2S_FMT_DATA_FORMAT_PCM_LONG:
default:
LOG_ERR("Unsupported I2S data format");
return -EINVAL;
}
sspsp |= SSPSP_SFRMWDTH(frame_len);
if (word_size_bits > 16) {
ssc0 |= (SSCR0_EDSS | SSCR0_DSIZE(word_size_bits - 16));
} else {
ssc0 |= SSCR0_DSIZE(word_size_bits);
}
ssp->ssc0 = ssc0;
ssp->ssc1 = ssc1;
ssp->ssc2 = ssc2;
ssp->ssc3 = ssc3;
ssp->sspsp2 = sspsp2;
ssp->sspsp = sspsp;
ssp->ssioc = ssioc;
ssp->ssto = ssto;
ssp->sstsa = sstsa;
ssp->ssrsa = ssrsa;
mn_div->mval = I2S_MNVAL(i2s_m);
mn_div->nval = I2S_MNVAL(i2s_n);
/* Set up DMA channel parameters */
word_size_bytes = (word_size_bits + 7) / 8;
strm->dma_cfg.source_data_size = word_size_bytes;
strm->dma_cfg.dest_data_size = word_size_bytes;
strm->state = I2S_STATE_READY;
return 0;
}
static int tx_stream_start(struct stream *strm,
volatile struct i2s_cavs_ssp *const ssp,
struct device *dev_dma)
{
size_t mem_block_size;
int ret;
ret = queue_get(&strm->mem_block_queue, strm->cfg.options,
&strm->mem_block, &mem_block_size);
if (ret < 0) {
return ret;
}
k_sem_give(&strm->sem);
/* Assure cache coherency before DMA read operation */
DCACHE_CLEAN(strm->mem_block, mem_block_size);
ret = start_dma(dev_dma, strm->dma_channel, &strm->dma_cfg,
strm->mem_block, (void *)&(ssp->ssd),
mem_block_size);
if (ret < 0) {
LOG_ERR("Failed to start TX DMA transfer: %d", ret);
return ret;
}
/* enable port */
ssp->ssc0 |= SSCR0_SSE;
/* Enable DMA service request handshake logic. Though DMA is
* already started, it won't work without the handshake logic.
*/
ssp->ssc1 |= SSCR1_TSRE;
ssp->sstsa |= (0x1 << 8);
return 0;
}
static void tx_stream_disable(struct stream *strm,
volatile struct i2s_cavs_ssp *const ssp,
struct device *dev_dma)
{
/* Disable DMA service request handshake logic. Handshake is
* not required now since DMA is not in operation.
*/
ssp->ssc1 &= ~SSCR1_TSRE;
ssp->sstsa &= ~(0x1 << 8);
dma_stop(dev_dma, strm->dma_channel);
if (((strm->cfg.options & I2S_OPT_PINGPONG) != I2S_OPT_PINGPONG) &&
(strm->mem_block != NULL)) {
k_mem_slab_free(strm->cfg.mem_slab, &strm->mem_block);
strm->mem_block = NULL;
}
strm->mem_block_queue.head = 0;
strm->mem_block_queue.tail = 0;
}
static void tx_queue_drop(struct stream *strm)
{
size_t size;
void *mem_block;
unsigned int n = 0;
while (queue_get(&strm->mem_block_queue, strm->cfg.options,
&mem_block, &size) == 0) {
if ((strm->cfg.options & I2S_OPT_PINGPONG)
!= I2S_OPT_PINGPONG) {
k_mem_slab_free(strm->cfg.mem_slab, &mem_block);
n++;
}
}
strm->mem_block_queue.head = 0;
strm->mem_block_queue.tail = 0;
for (; n > 0; n--) {
k_sem_give(&strm->sem);
}
}
static int i2s_cavs_trigger(struct device *dev, enum i2s_dir dir,
enum i2s_trigger_cmd cmd)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
struct stream *strm;
unsigned int key;
int ret;
if (dir == I2S_DIR_TX) {
strm = &dev_data->tx;
} else {
LOG_ERR("TX direction must be selected");
return -EINVAL;
}
switch (cmd) {
case I2S_TRIGGER_START:
if (strm->state != I2S_STATE_READY) {
LOG_DBG("START trigger: invalid state");
return -EIO;
}
__ASSERT_NO_MSG(strm->mem_block == NULL);
ret = strm->stream_start(strm, ssp, dev_data->dev_dma);
if (ret < 0) {
LOG_DBG("START trigger failed %d", ret);
return ret;
}
strm->state = I2S_STATE_RUNNING;
strm->last_block = false;
break;
case I2S_TRIGGER_STOP:
key = irq_lock();
if (strm->state != I2S_STATE_RUNNING) {
irq_unlock(key);
LOG_DBG("STOP trigger: invalid state");
return -EIO;
}
strm->state = I2S_STATE_STOPPING;
irq_unlock(key);
strm->last_block = true;
break;
case I2S_TRIGGER_DRAIN:
key = irq_lock();
if (strm->state != I2S_STATE_RUNNING) {
irq_unlock(key);
LOG_DBG("DRAIN trigger: invalid state");
return -EIO;
}
strm->state = I2S_STATE_STOPPING;
irq_unlock(key);
break;
case I2S_TRIGGER_DROP:
if (strm->state == I2S_STATE_NOT_READY) {
LOG_DBG("DROP trigger: invalid state");
return -EIO;
}
strm->stream_disable(strm, ssp, dev_data->dev_dma);
strm->queue_drop(strm);
strm->state = I2S_STATE_READY;
break;
case I2S_TRIGGER_PREPARE:
if (strm->state != I2S_STATE_ERROR) {
LOG_DBG("PREPARE trigger: invalid state");
return -EIO;
}
strm->state = I2S_STATE_READY;
strm->queue_drop(strm);
break;
default:
LOG_ERR("Unsupported trigger command");
return -EINVAL;
}
return 0;
}
static int i2s_cavs_write(struct device *dev, void *mem_block, size_t size)
{
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
struct stream *strm = &dev_data->tx;
int ret;
if (dev_data->tx.state != I2S_STATE_RUNNING &&
dev_data->tx.state != I2S_STATE_READY) {
LOG_ERR("invalid state");
return -EIO;
}
ret = k_sem_take(&dev_data->tx.sem, dev_data->tx.cfg.timeout);
if (ret < 0) {
LOG_ERR("Failure taking sem");
return ret;
}
/* Add data to the end of the TX queue */
queue_put(&dev_data->tx.mem_block_queue, strm->cfg.options,
mem_block, size);
return 0;
}
/* clear IRQ sources atm */
static void i2s_cavs_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
volatile struct i2s_cavs_ssp *const ssp = dev_cfg->regs;
u32_t temp;
/* clear IRQ */
temp = ssp->sss;
ssp->sss = temp;
}
static int i2s1_cavs_initialize(struct device *dev)
{
const struct i2s_cavs_config *const dev_cfg = DEV_CFG(dev);
struct i2s_cavs_dev_data *const dev_data = DEV_DATA(dev);
/* Configure interrupts */
dev_cfg->irq_config();
/* Initialize semaphores */
k_sem_init(&dev_data->tx.sem, CONFIG_I2S_CAVS_TX_BLOCK_COUNT,
CONFIG_I2S_CAVS_TX_BLOCK_COUNT);
dev_data->dev_dma = device_get_binding(CONFIG_I2S_CAVS_DMA_NAME);
if (!dev_data->dev_dma) {
LOG_ERR("%s device not found", CONFIG_I2S_CAVS_DMA_NAME);
return -ENODEV;
}
/* Enable module's IRQ */
irq_enable(dev_cfg->irq_id);
LOG_INF("Device %s initialized", DEV_NAME(dev));
return 0;
}
static const struct i2s_driver_api i2s_cavs_driver_api = {
.configure = i2s_cavs_configure,
.write = i2s_cavs_write,
.trigger = i2s_cavs_trigger,
};
/* I2S1 */
static struct device DEVICE_NAME_GET(i2s1_cavs);
static struct device *get_dev_from_dma_channel(u32_t dma_channel)
{
return &DEVICE_NAME_GET(i2s1_cavs);
}
struct queue_item i2s1_ring_buf[CONFIG_I2S_CAVS_TX_BLOCK_COUNT];
static void i2s1_irq_config(void)
{
IRQ_CONNECT(I2S1_CAVS_IRQ, CONFIG_I2S_CAVS_1_IRQ_PRI, i2s_cavs_isr,
DEVICE_GET(i2s1_cavs), 0);
}
static const struct i2s_cavs_config i2s1_cavs_config = {
.regs = (struct i2s_cavs_ssp *)SSP_BASE(1),
.mn_regs = (struct i2s_cavs_mn_div *)SSP_MN_DIV_BASE(1),
.irq_id = I2S1_CAVS_IRQ,
.irq_config = i2s1_irq_config,
};
static struct i2s_cavs_dev_data i2s1_cavs_data = {
.tx = {
.dma_channel = CONFIG_I2S_CAVS_1_DMA_TX_CHANNEL,
.dma_cfg = {
.source_data_size = 1,
.dest_data_size = 1,
.source_burst_length = 1,
.dest_burst_length = 1,
.dma_callback = dma_tx_callback,
.complete_callback_en = 0,
.error_callback_en = 1,
.block_count = 1,
.channel_direction = MEMORY_TO_PERIPHERAL,
.dma_slot = DMA_HANDSHAKE_SSP1_TX,
},
.mem_block_queue.buf = i2s1_ring_buf,
.mem_block_queue.len = ARRAY_SIZE(i2s1_ring_buf),
.stream_start = tx_stream_start,
.stream_disable = tx_stream_disable,
.queue_drop = tx_queue_drop,
},
};
DEVICE_AND_API_INIT(i2s1_cavs, CONFIG_I2S_CAVS_1_NAME, &i2s1_cavs_initialize,
&i2s1_cavs_data, &i2s1_cavs_config, POST_KERNEL,
CONFIG_I2S_INIT_PRIORITY, &i2s_cavs_driver_api);