zephyr/drivers/ieee802154/ieee802154_mcr20a.c

1491 lines
34 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ieee802154_mcr20a.c - NXP MCR20A driver */
/*
* Copyright (c) 2017 PHYTEC Messtechnik GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME ieee802154_mcr20a
#define LOG_LEVEL CONFIG_IEEE802154_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <kernel.h>
#include <arch/cpu.h>
#include <board.h>
#include <device.h>
#include <init.h>
#include <net/net_if.h>
#include <net/net_pkt.h>
#include <misc/byteorder.h>
#include <string.h>
#include <random/rand32.h>
#include <gpio.h>
#include <net/ieee802154_radio.h>
#include "ieee802154_mcr20a.h"
#include "MCR20Overwrites.h"
/*
* max. TX duraton = (PR + SFD + FLI + PDU + FCS)
* + RX_warmup + cca + TX_warmup
* TODO: Calculate the value from frame length.
* Invalid for the SLOTTED mode.
*/
#define _MAX_PKT_TX_DURATION (133 + 9 + 8 + 9)
#if LOG_LEVEL == LOG_LEVEL_DBG
/* Prevent timer overflow during SYS_LOG_* output */
#define _MACACKWAITDURATION (864 / 16 + 11625)
#define MCR20A_SEQ_SYNC_TIMEOUT (200)
#else
#define MCR20A_SEQ_SYNC_TIMEOUT (20)
#define _MACACKWAITDURATION (864 / 16) /* 864us * 62500Hz */
#endif
#define MCR20A_FCS_LENGTH (2)
#define MCR20A_PSDU_LENGTH (125)
#define MCR20A_GET_SEQ_STATE_RETRIES (3)
/* Values for the clock output (CLK_OUT) configuration */
#ifdef CONFIG_MCR20A_CLK_OUT_DISABLED
#define MCR20A_CLK_OUT_CONFIG (MCR20A_CLK_OUT_HIZ)
#elif CONFIG_MCR20A_CLK_OUT_32MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(0) | MCR20A_CLK_OUT_DS |\
MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_16MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(1) | MCR20A_CLK_OUT_DS |\
MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_8MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(2) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_4MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(3) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_1MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(4) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_250KHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(5) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_62500HZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(6) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_32768HZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(7) | MCR20A_CLK_OUT_EN)
#endif
#ifdef CONFIG_MCR20A_IS_PART_OF_KW2XD_SIP
#define PART_OF_KW2XD_SIP 1
#else
#define PART_OF_KW2XD_SIP 0
#endif
/* Values for the power mode (PM) configuration */
#define MCR20A_PM_HIBERNATE 0
#define MCR20A_PM_DOZE MCR20A_PWR_MODES_XTALEN
#define MCR20A_PM_IDLE (MCR20A_PWR_MODES_XTALEN |\
MCR20A_PWR_MODES_PMC_MODE)
#define MCR20A_PM_AUTODOZE (MCR20A_PWR_MODES_XTALEN |\
MCR20A_PWR_MODES_AUTODOZE)
/* Default settings for the device initialization */
#define MCR20A_DEFAULT_TX_POWER (0)
#define MCR20A_DEFAULT_CHANNEL (26)
/* RF TX power max/min values (dBm) */
#define MCR20A_OUTPUT_POWER_MAX (8)
#define MCR20A_OUTPUT_POWER_MIN (-35)
/* Lookup table for the Power Control register */
static const u8_t pow_lt[44] = {
3, 4, 5, 6,
6, 7, 7, 8,
8, 9, 9, 10,
11, 11, 12, 13,
13, 14, 14, 15,
16, 16, 17, 18,
18, 19, 20, 20,
21, 21, 22, 23,
23, 24, 25, 25,
26, 27, 27, 28,
28, 29, 30, 31
};
/* PLL integer and fractional lookup tables
*
* Fc = 2405 + 5(k - 11) , k = 11,12,...,26
*
* Equation for PLL frequency, MKW2xD Reference Manual, p.255 :
* F = ((PLL_INT0 + 64) + (PLL_FRAC0/65536))32MHz
*
*/
static const u8_t pll_int_lt[16] = {
11, 11, 11, 11,
11, 11, 12, 12,
12, 12, 12, 12,
13, 13, 13, 13
};
static const u16_t pll_frac_lt[16] = {
10240, 20480, 30720, 40960,
51200, 61440, 6144, 16384,
26624, 36864, 47104, 57344,
2048, 12288, 22528, 32768
};
#define _usleep(usec) k_busy_wait(usec)
/* Read direct (dreg is true) or indirect register (dreg is false) */
u8_t _mcr20a_read_reg(struct mcr20a_context *dev, bool dreg, u8_t addr)
{
u8_t cmd_buf[3] = {
dreg ? (MCR20A_REG_READ | addr) :
(MCR20A_IAR_INDEX | MCR20A_REG_WRITE),
dreg ? 0 : (addr | MCR20A_REG_READ),
0
};
u8_t len = dreg ? 2 : 3;
const struct spi_buf buf = {
.buf = cmd_buf,
.len = len
};
const struct spi_buf_set tx = {
.buffers = &buf,
.count = 1
};
const struct spi_buf_set rx = {
.buffers = &buf,
.count = 1
};
if (spi_transceive(dev->spi, &dev->spi_cfg, &tx, &rx) == 0) {
return cmd_buf[len - 1];
}
LOG_ERR("Failed");
return 0;
}
/* Write direct (dreg is true) or indirect register (dreg is false) */
bool _mcr20a_write_reg(struct mcr20a_context *dev, bool dreg, u8_t addr,
u8_t value)
{
u8_t cmd_buf[3] = {
dreg ? (MCR20A_REG_WRITE | addr) :
(MCR20A_IAR_INDEX | MCR20A_REG_WRITE),
dreg ? value : (addr | MCR20A_REG_WRITE),
dreg ? 0 : value
};
const struct spi_buf buf = {
.buf = cmd_buf,
.len = dreg ? 2 : 3
};
const struct spi_buf_set tx = {
.buffers = &buf,
.count = 1
};
return (spi_write(dev->spi, &dev->spi_cfg, &tx) == 0);
}
/* Write multiple bytes to direct or indirect register */
bool _mcr20a_write_burst(struct mcr20a_context *dev, bool dreg, u16_t addr,
u8_t *data_buf, u8_t len)
{
u8_t cmd_buf[2] = {
dreg ? MCR20A_REG_WRITE | addr :
MCR20A_IAR_INDEX | MCR20A_REG_WRITE,
dreg ? 0 : addr | MCR20A_REG_WRITE
};
struct spi_buf bufs[2] = {
{
.buf = cmd_buf,
.len = dreg ? 1 : 2
},
{
.buf = data_buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 2
};
return (spi_write(dev->spi, &dev->spi_cfg, &tx) == 0);
}
/* Read multiple bytes from direct or indirect register */
bool _mcr20a_read_burst(struct mcr20a_context *dev, bool dreg, u16_t addr,
u8_t *data_buf, u8_t len)
{
u8_t cmd_buf[2] = {
dreg ? MCR20A_REG_READ | addr :
MCR20A_IAR_INDEX | MCR20A_REG_WRITE,
dreg ? 0 : addr | MCR20A_REG_READ
};
struct spi_buf bufs[2] = {
{
.buf = cmd_buf,
.len = dreg ? 1 : 2
},
{
.buf = data_buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 1
};
const struct spi_buf_set rx = {
.buffers = bufs,
.count = 2
};
return (spi_transceive(dev->spi, &dev->spi_cfg, &tx, &rx) == 0);
}
/* Mask (msk is true) or unmask all interrupts from asserting IRQ_B */
static bool mcr20a_mask_irqb(struct mcr20a_context *dev, bool msk)
{
u8_t ctrl4 = read_reg_phy_ctrl4(dev);
if (msk) {
ctrl4 |= MCR20A_PHY_CTRL4_TRCV_MSK;
} else {
ctrl4 &= ~MCR20A_PHY_CTRL4_TRCV_MSK;
}
return write_reg_phy_ctrl4(dev, ctrl4);
}
/** Set an timeout value for the given compare register */
static int mcr20a_timer_set(struct mcr20a_context *mcr20a,
u8_t cmp_reg,
u32_t timeout)
{
u32_t now = 0;
u32_t next;
bool retval;
if (!read_burst_event_timer(mcr20a, (u8_t *)&now)) {
goto error;
}
now = sys_le32_to_cpu(now);
next = now + timeout;
LOG_DBG("now: 0x%x set 0x%x", now, next);
next = sys_cpu_to_le32(next);
switch (cmp_reg) {
case 1:
retval = write_burst_t1cmp(mcr20a, (u8_t *)&next);
break;
case 2:
retval = write_burst_t2cmp(mcr20a, (u8_t *)&next);
break;
case 3:
retval = write_burst_t3cmp(mcr20a, (u8_t *)&next);
break;
case 4:
retval = write_burst_t4cmp(mcr20a, (u8_t *)&next);
break;
default:
goto error;
}
if (!retval) {
goto error;
}
return 0;
error:
LOG_ERR("Failed");
return -EIO;
}
static int mcr20a_timer_init(struct device *dev, u8_t tb)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t buf[3] = {0, 0, 0};
u8_t ctrl4;
if (!write_reg_tmr_prescale(mcr20a,
set_bits_tmr_prescale(tb))) {
goto error;
}
if (!write_burst_t1cmp(mcr20a, buf)) {
goto error;
}
ctrl4 = read_reg_phy_ctrl4(mcr20a);
ctrl4 |= MCR20A_PHY_CTRL4_TMRLOAD;
if (!write_reg_phy_ctrl4(mcr20a, ctrl4)) {
goto error;
}
LOG_DBG("done, timebase %d", tb);
return 0;
error:
LOG_ERR("Failed");
return -EIO;
}
/* Set Timer Comparator 4 */
static int mcr20a_t4cmp_set(struct mcr20a_context *mcr20a,
u32_t timeout)
{
u8_t irqsts3;
u8_t ctrl3;
if (mcr20a_timer_set(mcr20a, 4, timeout)) {
goto error;
}
/* enable and clear irq for the timer 4 */
irqsts3 = read_reg_irqsts3(mcr20a);
irqsts3 &= ~MCR20A_IRQSTS3_TMR4MSK;
irqsts3 |= MCR20A_IRQSTS3_TMR4IRQ;
if (!write_reg_irqsts3(mcr20a, irqsts3)) {
goto error;
}
ctrl3 = read_reg_phy_ctrl3(mcr20a);
ctrl3 |= MCR20A_PHY_CTRL3_TMR4CMP_EN;
if (!write_reg_phy_ctrl3(mcr20a, ctrl3)) {
goto error;
}
return 0;
error:
LOG_DBG("Failed");
return -EIO;
}
/* Clear Timer Comparator 4 */
static int mcr20a_t4cmp_clear(struct mcr20a_context *mcr20a)
{
u8_t irqsts3;
u8_t ctrl3;
ctrl3 = read_reg_phy_ctrl3(mcr20a);
ctrl3 &= ~MCR20A_PHY_CTRL3_TMR4CMP_EN;
if (!write_reg_phy_ctrl3(mcr20a, ctrl3)) {
goto error;
}
irqsts3 = read_reg_irqsts3(mcr20a);
irqsts3 |= MCR20A_IRQSTS3_TMR4IRQ;
if (!write_reg_irqsts3(mcr20a, irqsts3)) {
goto error;
}
return 0;
error:
LOG_DBG("Failed");
return -EIO;
}
static inline void _xcvseq_wait_until_idle(struct mcr20a_context *mcr20a)
{
u8_t state;
u8_t retries = MCR20A_GET_SEQ_STATE_RETRIES;
do {
state = read_reg_seq_state(mcr20a);
retries--;
} while ((state & MCR20A_SEQ_STATE_MASK) && retries);
if (state & MCR20A_SEQ_STATE_MASK) {
LOG_ERR("Timeout");
}
}
static inline int mcr20a_abort_sequence(struct mcr20a_context *mcr20a,
bool force)
{
u8_t ctrl1;
ctrl1 = read_reg_phy_ctrl1(mcr20a);
LOG_DBG("CTRL1 0x%02x", ctrl1);
if (((ctrl1 & MCR20A_PHY_CTRL1_XCVSEQ_MASK) == MCR20A_XCVSEQ_TX) ||
((ctrl1 & MCR20A_PHY_CTRL1_XCVSEQ_MASK) == MCR20A_XCVSEQ_TX_RX)) {
if (!force) {
return -1;
}
}
/* Abort ongoing sequence */
ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
if (!write_reg_phy_ctrl1(mcr20a, ctrl1)) {
return -1;
}
_xcvseq_wait_until_idle(mcr20a);
/* Clear relevant interrupt flags */
if (!write_reg_irqsts1(mcr20a, MCR20A_IRQSTS1_IRQ_MASK)) {
return -1;
}
return 0;
}
/* Initiate a (new) Transceiver Sequence */
static inline int mcr20a_set_sequence(struct mcr20a_context *mcr20a,
u8_t seq)
{
u8_t ctrl1 = 0;
seq = set_bits_phy_ctrl1_xcvseq(seq);
ctrl1 = read_reg_phy_ctrl1(mcr20a);
ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
if ((seq == MCR20A_XCVSEQ_TX_RX) &&
(ctrl1 & MCR20A_PHY_CTRL1_RXACKRQD)) {
/* RXACKRQD enabled, timer should be set. */
mcr20a_t4cmp_set(mcr20a, _MACACKWAITDURATION +
_MAX_PKT_TX_DURATION);
}
ctrl1 |= seq;
if (!write_reg_phy_ctrl1(mcr20a, ctrl1)) {
return -EIO;
}
return 0;
}
static inline u32_t mcr20a_get_rssi(u32_t lqi)
{
/* Get rssi (Received Signal Strength Indicator, unit is dBm)
* from lqi (Link Quality Indicator) value.
* There are two different equations for RSSI:
* RF = (LQI 286.6) / 2.69333 (MKW2xD Reference Manual)
* RF = (LQI 295.4) / 2.84 (MCR20A Reference Manual)
* The last appears more to match the graphic (Figure 3-10).
* Since RSSI value is always positive and we want to
* avoid the floating point computation:
* -RF * 65536 = (LQI / 2.84 - 295.4 / 2.84) * 65536
* RF * 65536 = (295.4 * 65536 / 2.84) - (LQI * 65536 / 2.84)
*/
u32_t a = (u32_t)(295.4 * 65536 / 2.84);
u32_t b = (u32_t)(65536 / 2.84);
return (a - (b * lqi)) >> 16;
}
static inline u8_t *get_mac(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u32_t *ptr = (u32_t *)(mcr20a->mac_addr);
UNALIGNED_PUT(sys_rand32_get(), ptr);
ptr = (u32_t *)(mcr20a->mac_addr + 4);
UNALIGNED_PUT(sys_rand32_get(), ptr);
mcr20a->mac_addr[0] = (mcr20a->mac_addr[0] & ~0x01) | 0x02;
return mcr20a->mac_addr;
}
static inline bool read_rxfifo_content(struct mcr20a_context *dev,
struct net_buf *buf, u8_t len)
{
u8_t cmd = MCR20A_BUF_READ;
struct spi_buf bufs[2] = {
{
.buf = &cmd,
.len = 1
},
{
.buf = buf->data,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 1
};
const struct spi_buf_set rx = {
.buffers = bufs,
.count = 2
};
if (spi_transceive(dev->spi, &dev->spi_cfg, &tx, &rx) == 0) {
net_buf_add(buf, len);
}
return true;
}
static inline void mcr20a_rx(struct mcr20a_context *mcr20a, u8_t len)
{
struct net_pkt *pkt = NULL;
struct net_buf *frag;
u8_t pkt_len;
pkt_len = len - MCR20A_FCS_LENGTH;
pkt = net_pkt_get_reserve_rx(0, K_NO_WAIT);
if (!pkt) {
LOG_ERR("No buf available");
goto out;
}
frag = net_pkt_get_frag(pkt, K_NO_WAIT);
if (!frag) {
LOG_ERR("No frag available");
goto out;
}
net_pkt_frag_insert(pkt, frag);
if (!read_rxfifo_content(mcr20a, frag, pkt_len)) {
LOG_ERR("No content read");
goto out;
}
if (ieee802154_radio_handle_ack(mcr20a->iface, pkt) == NET_OK) {
LOG_DBG("ACK packet handled");
goto out;
}
net_pkt_set_ieee802154_lqi(pkt, read_reg_lqi_value(mcr20a));
net_pkt_set_ieee802154_rssi(pkt, mcr20a_get_rssi(
net_pkt_ieee802154_lqi(pkt)));
LOG_DBG("Caught a packet (%u) (LQI: %u, RSSI: %u)",
pkt_len, net_pkt_ieee802154_lqi(pkt),
net_pkt_ieee802154_rssi(pkt));
if (net_recv_data(mcr20a->iface, pkt) < 0) {
LOG_DBG("Packet dropped by NET stack");
goto out;
}
net_analyze_stack("MCR20A Rx Fiber stack",
K_THREAD_STACK_BUFFER(mcr20a->mcr20a_rx_stack),
K_THREAD_STACK_SIZEOF(mcr20a->mcr20a_rx_stack));
return;
out:
if (pkt) {
net_pkt_unref(pkt);
}
}
/*
* The function checks how the XCV sequence has been completed
* and sets the variable seq_retval accordingly. It returns true
* if a new sequence is to be set. This function is only to be called
* when a sequence has been completed.
*/
static inline bool _irqsts1_event(struct mcr20a_context *mcr20a,
u8_t *dregs)
{
u8_t seq = dregs[MCR20A_PHY_CTRL1] & MCR20A_PHY_CTRL1_XCVSEQ_MASK;
u8_t new_seq = MCR20A_XCVSEQ_RECEIVE;
bool retval = false;
switch (seq) {
case MCR20A_XCVSEQ_RECEIVE:
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_RXIRQ)) {
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_TXIRQ)) {
LOG_DBG("Finished RxSeq + TxAck");
} else {
LOG_DBG("Finished RxSeq");
}
mcr20a_rx(mcr20a, dregs[MCR20A_RX_FRM_LEN]);
retval = true;
}
break;
case MCR20A_XCVSEQ_TX:
case MCR20A_XCVSEQ_TX_RX:
if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_CCAIRQ) {
if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_CCA) {
LOG_DBG("Finished CCA, CH busy");
atomic_set(&mcr20a->seq_retval, -EBUSY);
retval = true;
break;
}
}
if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_TXIRQ) {
atomic_set(&mcr20a->seq_retval, 0);
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_RXIRQ)) {
LOG_DBG("Finished TxSeq + RxAck");
/* Got Ack, timer should be disabled. */
mcr20a_t4cmp_clear(mcr20a);
} else {
LOG_DBG("Finished TxSeq");
}
retval = true;
}
break;
case MCR20A_XCVSEQ_CONTINUOUS_CCA:
case MCR20A_XCVSEQ_CCA:
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_CCAIRQ)) {
/* If CCCA, then timer should be disabled. */
/* mcr20a_t4cmp_clear(mcr20a); */
if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_CCA) {
LOG_DBG("Finished CCA, CH busy");
atomic_set(&mcr20a->seq_retval, -EBUSY);
} else {
/**
* Assume that after the CCA,
* a transmit sequence follows and
* set here the sequence manager to Idle.
*/
LOG_DBG("Finished CCA, CH idle");
new_seq = MCR20A_XCVSEQ_IDLE;
atomic_set(&mcr20a->seq_retval, 0);
}
retval = true;
}
break;
case MCR20A_XCVSEQ_IDLE:
default:
LOG_ERR("SEQ triggered, but XCVSEQ is in the Idle state");
LOG_ERR("IRQSTS: 0x%02x", dregs[MCR20A_IRQSTS1]);
break;
}
dregs[MCR20A_PHY_CTRL1] &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
dregs[MCR20A_PHY_CTRL1] |= new_seq;
return retval;
}
/*
* Check the Timer Comparator IRQ register IRQSTS3.
* Currently we use only T4CMP to cancel the running sequence,
* usually the TR.
*/
static inline bool _irqsts3_event(struct mcr20a_context *mcr20a,
u8_t *dregs)
{
bool retval = false;
if (dregs[MCR20A_IRQSTS3] & MCR20A_IRQSTS3_TMR4IRQ) {
LOG_DBG("Sequence timeout, IRQSTSs 0x%02x 0x%02x 0x%02x",
dregs[MCR20A_IRQSTS1],
dregs[MCR20A_IRQSTS2],
dregs[MCR20A_IRQSTS3]);
atomic_set(&mcr20a->seq_retval, -EBUSY);
mcr20a_t4cmp_clear(mcr20a);
dregs[MCR20A_PHY_CTRL1] &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
dregs[MCR20A_PHY_CTRL1] |= MCR20A_XCVSEQ_RECEIVE;
/* Clear all interrupts */
dregs[MCR20A_IRQSTS1] = MCR20A_IRQSTS1_IRQ_MASK;
retval = true;
} else {
LOG_ERR("IRQSTS3 contains untreated IRQs: 0x%02x",
dregs[MCR20A_IRQSTS3]);
}
return retval;
}
static void mcr20a_thread_main(void *arg)
{
struct device *dev = (struct device *)arg;
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t dregs[MCR20A_PHY_CTRL4 + 1];
bool set_new_seq;
u8_t ctrl1 = 0;
while (true) {
k_sem_take(&mcr20a->isr_sem, K_FOREVER);
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
set_new_seq = false;
if (!mcr20a_mask_irqb(mcr20a, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto unmask_irqb;
}
/* Read the register from IRQSTS1 until CTRL4 */
if (!read_burst_irqsts1_ctrl4(mcr20a, dregs)) {
LOG_ERR("Failed to read register");
goto unmask_irqb;
}
/* make backup from PHY_CTRL1 register */
ctrl1 = dregs[MCR20A_PHY_CTRL1];
if (dregs[MCR20A_IRQSTS3] & MCR20A_IRQSTS3_IRQ_MASK) {
set_new_seq = _irqsts3_event(mcr20a, dregs);
} else if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_SEQIRQ) {
set_new_seq = _irqsts1_event(mcr20a, dregs);
}
if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_IRQ_MASK) {
LOG_ERR("IRQSTS2 contains untreated IRQs: 0x%02x",
dregs[MCR20A_IRQSTS2]);
}
LOG_DBG("WB: 0x%02x | 0x%02x | 0x%02x",
dregs[MCR20A_IRQSTS1],
dregs[MCR20A_IRQSTS2],
dregs[MCR20A_IRQSTS3]);
/* Write back register, clear IRQs and set new sequence */
if (set_new_seq) {
/* Reset sequence manager */
ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
if (!write_reg_phy_ctrl1(mcr20a, ctrl1)) {
LOG_ERR("Failed to reset SEQ manager");
}
_xcvseq_wait_until_idle(mcr20a);
if (!write_burst_irqsts1_ctrl1(mcr20a, dregs)) {
LOG_ERR("Failed to write CTRL1");
}
} else {
if (!write_burst_irqsts1_irqsts3(mcr20a, dregs)) {
LOG_ERR("Failed to write IRQSTS3");
}
}
unmask_irqb:
if (!mcr20a_mask_irqb(mcr20a, false)) {
LOG_ERR("Failed to unmask IRQ_B");
}
k_mutex_unlock(&mcr20a->phy_mutex);
if (set_new_seq) {
k_sem_give(&mcr20a->seq_sync);
}
}
}
static inline void irqb_int_handler(struct device *port,
struct gpio_callback *cb, u32_t pins)
{
struct mcr20a_context *mcr20a = CONTAINER_OF(cb,
struct mcr20a_context,
irqb_cb);
k_sem_give(&mcr20a->isr_sem);
}
static inline void set_reset(struct device *dev, u32_t value)
{
struct mcr20a_context *mcr20a = dev->driver_data;
gpio_pin_write(mcr20a->reset_gpio,
CONFIG_MCR20A_GPIO_RESET_PIN, value);
}
static void enable_irqb_interrupt(struct mcr20a_context *mcr20a,
bool enable)
{
if (enable) {
gpio_pin_enable_callback(mcr20a->irq_gpio,
CONFIG_MCR20A_GPIO_IRQ_B_PIN);
} else {
gpio_pin_disable_callback(mcr20a->irq_gpio,
CONFIG_MCR20A_GPIO_IRQ_B_PIN);
}
}
static inline void setup_gpio_callbacks(struct mcr20a_context *mcr20a)
{
gpio_init_callback(&mcr20a->irqb_cb,
irqb_int_handler,
BIT(CONFIG_MCR20A_GPIO_IRQ_B_PIN));
gpio_add_callback(mcr20a->irq_gpio, &mcr20a->irqb_cb);
}
static int mcr20a_set_cca_mode(struct device *dev, u8_t mode)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t ctrl4;
ctrl4 = read_reg_phy_ctrl4(mcr20a);
ctrl4 &= ~MCR20A_PHY_CTRL4_CCATYPE_MASK;
ctrl4 |= set_bits_phy_ctrl4_ccatype(mode);
if (!write_reg_phy_ctrl4(mcr20a, ctrl4)) {
LOG_ERR("Failed");
return -EIO;
}
return 0;
}
static enum ieee802154_hw_caps mcr20a_get_capabilities(struct device *dev)
{
return IEEE802154_HW_FCS |
IEEE802154_HW_2_4_GHZ |
IEEE802154_HW_TX_RX_ACK |
IEEE802154_HW_FILTER;
}
/* Note: CCA before TX is enabled by default */
static int mcr20a_cca(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
int retval;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!mcr20a_mask_irqb(mcr20a, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto error;
}
k_sem_init(&mcr20a->seq_sync, 0, 1);
if (mcr20a_abort_sequence(mcr20a, false)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
LOG_DBG("start CCA sequence");
if (mcr20a_set_sequence(mcr20a, MCR20A_XCVSEQ_CCA)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
if (!mcr20a_mask_irqb(mcr20a, false)) {
LOG_ERR("Failed to unmask IRQ_B");
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
retval = k_sem_take(&mcr20a->seq_sync, MCR20A_SEQ_SYNC_TIMEOUT);
if (retval) {
LOG_ERR("Timeout occurred, %d", retval);
return retval;
}
LOG_DBG("done");
return mcr20a->seq_retval;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
static int mcr20a_set_channel(struct device *dev, u16_t channel)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t buf[3];
u8_t ctrl1;
int retval = -EIO;
if (channel < 11 || channel > 26) {
LOG_ERR("Unsupported channel %u", channel);
return -EINVAL;
}
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!mcr20a_mask_irqb(mcr20a, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto out;
}
ctrl1 = read_reg_phy_ctrl1(mcr20a);
if (mcr20a_abort_sequence(mcr20a, true)) {
LOG_ERR("Failed to reset XCV sequence");
goto out;
}
LOG_DBG("%u", channel);
channel -= 11;
buf[0] = set_bits_pll_int0_val(pll_int_lt[channel]);
buf[1] = (u8_t)pll_frac_lt[channel];
buf[2] = (u8_t)(pll_frac_lt[channel] >> 8);
if (!write_burst_pll_int0(mcr20a, buf)) {
LOG_ERR("Failed to set PLL");
goto out;
}
if (mcr20a_set_sequence(mcr20a, ctrl1)) {
LOG_ERR("Failed to restore XCV sequence");
goto out;
}
retval = 0;
out:
if (!mcr20a_mask_irqb(mcr20a, false)) {
LOG_ERR("Failed to unmask IRQ_B");
retval = -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
return retval;
}
static int mcr20a_set_pan_id(struct device *dev, u16_t pan_id)
{
struct mcr20a_context *mcr20a = dev->driver_data;
pan_id = sys_le16_to_cpu(pan_id);
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!write_burst_pan_id(mcr20a, (u8_t *) &pan_id)) {
LOG_ERR("Failed");
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("0x%x", pan_id);
return 0;
}
static int mcr20a_set_short_addr(struct device *dev, u16_t short_addr)
{
struct mcr20a_context *mcr20a = dev->driver_data;
short_addr = sys_le16_to_cpu(short_addr);
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!write_burst_short_addr(mcr20a, (u8_t *) &short_addr)) {
LOG_ERR("Failed");
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("0x%x", short_addr);
return 0;
}
static int mcr20a_set_ieee_addr(struct device *dev, const u8_t *ieee_addr)
{
struct mcr20a_context *mcr20a = dev->driver_data;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!write_burst_ext_addr(mcr20a, (void *)ieee_addr)) {
LOG_ERR("Failed");
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
return 0;
}
static int mcr20a_filter(struct device *dev,
bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return mcr20a_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return mcr20a_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return mcr20a_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int mcr20a_set_txpower(struct device *dev, s16_t dbm)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t pwr;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
LOG_DBG("%d", dbm);
if ((dbm > MCR20A_OUTPUT_POWER_MAX) ||
(dbm < MCR20A_OUTPUT_POWER_MIN)) {
goto error;
}
pwr = pow_lt[dbm - MCR20A_OUTPUT_POWER_MIN];
if (!write_reg_pa_pwr(mcr20a, set_bits_pa_pwr_val(pwr))) {
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
return 0;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("Failed");
return -EIO;
}
static inline bool write_txfifo_content(struct mcr20a_context *dev,
struct net_pkt *pkt,
struct net_buf *frag)
{
size_t payload_len = net_pkt_ll_reserve(pkt) + frag->len;
u8_t cmd_buf[2] = {
MCR20A_BUF_WRITE,
payload_len + MCR20A_FCS_LENGTH
};
const struct spi_buf bufs[2] = {
{
.buf = cmd_buf,
.len = 2
},
{
.buf = frag->data - net_pkt_ll_reserve(pkt),
.len = payload_len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 2
};
if (payload_len > MCR20A_PSDU_LENGTH) {
LOG_ERR("Payload too long");
return 0;
}
return (spi_write(dev->spi, &dev->spi_cfg, &tx) == 0);
}
static int mcr20a_tx(struct device *dev,
struct net_pkt *pkt,
struct net_buf *frag)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t seq = ieee802154_is_ar_flag_set(pkt) ? MCR20A_XCVSEQ_TX_RX :
MCR20A_XCVSEQ_TX;
int retval;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
LOG_DBG("%p (%u)",
frag, net_pkt_ll_reserve(pkt) + frag->len);
if (!mcr20a_mask_irqb(mcr20a, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto error;
}
if (mcr20a_abort_sequence(mcr20a, false)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
if (!write_txfifo_content(mcr20a, pkt, frag)) {
LOG_ERR("Did not write properly into TX FIFO");
goto error;
}
k_sem_init(&mcr20a->seq_sync, 0, 1);
if (mcr20a_set_sequence(mcr20a, seq)) {
LOG_ERR("Cannot start transmission");
goto error;
}
if (!mcr20a_mask_irqb(mcr20a, false)) {
LOG_ERR("Failed to unmask IRQ_B");
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
retval = k_sem_take(&mcr20a->seq_sync, MCR20A_SEQ_SYNC_TIMEOUT);
if (retval) {
LOG_ERR("Timeout occurred, %d", retval);
return retval;
}
LOG_DBG("done");
return mcr20a->seq_retval;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
static int mcr20a_start(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t timeout = 6;
u8_t status;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
enable_irqb_interrupt(mcr20a, false);
if (!write_reg_pwr_modes(mcr20a, MCR20A_PM_AUTODOZE)) {
LOG_ERR("Error starting MCR20A");
goto error;
}
do {
_usleep(50);
timeout--;
status = read_reg_pwr_modes(mcr20a);
} while (!(status & MCR20A_PWR_MODES_XTAL_READY) && timeout);
if (!(status & MCR20A_PWR_MODES_XTAL_READY)) {
LOG_ERR("Timeout, failed to wake up");
goto error;
}
/* Clear all interrupt flags */
write_reg_irqsts1(mcr20a, MCR20A_IRQSTS1_IRQ_MASK);
write_reg_irqsts2(mcr20a, MCR20A_IRQSTS2_IRQ_MASK);
write_reg_irqsts3(mcr20a, MCR20A_IRQSTS3_IRQ_MASK |
MCR20A_IRQSTS3_TMR_MASK);
if (mcr20a_abort_sequence(mcr20a, true)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
if (mcr20a_set_sequence(mcr20a, MCR20A_XCVSEQ_RECEIVE)) {
LOG_ERR("Failed to set XCV sequence");
goto error;
}
enable_irqb_interrupt(mcr20a, true);
if (!mcr20a_mask_irqb(mcr20a, false)) {
LOG_ERR("Failed to unmask IRQ_B");
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("started");
return 0;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
static int mcr20a_stop(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t power_mode;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!mcr20a_mask_irqb(mcr20a, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto error;
}
if (mcr20a_abort_sequence(mcr20a, true)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
enable_irqb_interrupt(mcr20a, false);
if (PART_OF_KW2XD_SIP) {
power_mode = MCR20A_PM_DOZE;
} else {
power_mode = MCR20A_PM_HIBERNATE;
}
if (!write_reg_pwr_modes(mcr20a, power_mode)) {
goto error;
}
LOG_DBG("stopped");
k_mutex_unlock(&mcr20a->phy_mutex);
return 0;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_ERR("Error stopping MCR20A");
return -EIO;
}
static int mcr20a_update_overwrites(struct mcr20a_context *dev)
{
if (!write_reg_overwrite_ver(dev, overwrites_direct[0].data)) {
goto error;
}
for (u8_t i = 0;
i < sizeof(overwrites_indirect) / sizeof(overwrites_t);
i++) {
if (!_mcr20a_write_reg(dev, true,
overwrites_indirect[i].address,
overwrites_indirect[i].data)) {
goto error;
}
}
return 0;
error:
LOG_ERR("Error update overwrites");
return -EIO;
}
static int power_on_and_setup(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t timeout = 6;
u32_t status;
u8_t tmp = 0;
if (!PART_OF_KW2XD_SIP) {
set_reset(dev, 0);
_usleep(150);
set_reset(dev, 1);
do {
_usleep(50);
timeout--;
gpio_pin_read(mcr20a->irq_gpio,
CONFIG_MCR20A_GPIO_IRQ_B_PIN, &status);
} while (status && timeout);
if (status) {
LOG_ERR("Timeout, failed to get WAKE IRQ");
return -EIO;
}
}
tmp = MCR20A_CLK_OUT_CONFIG | MCR20A_CLK_OUT_EXTEND;
write_reg_clk_out_ctrl(mcr20a, tmp);
if (read_reg_clk_out_ctrl(mcr20a) != tmp) {
LOG_ERR("Failed to get device up");
return -EIO;
}
/* Clear all interrupt flags */
write_reg_irqsts1(mcr20a, MCR20A_IRQSTS1_IRQ_MASK);
write_reg_irqsts2(mcr20a, MCR20A_IRQSTS2_IRQ_MASK);
write_reg_irqsts3(mcr20a, MCR20A_IRQSTS3_IRQ_MASK |
MCR20A_IRQSTS3_TMR_MASK);
mcr20a_update_overwrites(mcr20a);
mcr20a_timer_init(dev, MCR20A_TIMEBASE_62500HZ);
mcr20a_set_txpower(dev, MCR20A_DEFAULT_TX_POWER);
mcr20a_set_channel(dev, MCR20A_DEFAULT_CHANNEL);
mcr20a_set_cca_mode(dev, 1);
write_reg_rx_wtr_mark(mcr20a, 8);
/* Configure PHY behaviour */
tmp = MCR20A_PHY_CTRL1_CCABFRTX |
MCR20A_PHY_CTRL1_AUTOACK |
MCR20A_PHY_CTRL1_RXACKRQD;
write_reg_phy_ctrl1(mcr20a, tmp);
/* Enable Sequence-end interrupt */
tmp = MCR20A_PHY_CTRL2_SEQMSK;
write_reg_phy_ctrl2(mcr20a, ~tmp);
setup_gpio_callbacks(mcr20a);
return 0;
}
static inline int configure_gpios(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
/* setup gpio for the modem interrupt */
mcr20a->irq_gpio = device_get_binding(CONFIG_MCR20A_GPIO_IRQ_B_NAME);
if (mcr20a->irq_gpio == NULL) {
LOG_ERR("Failed to get pointer to %s device",
CONFIG_MCR20A_GPIO_IRQ_B_NAME);
return -EINVAL;
}
gpio_pin_configure(mcr20a->irq_gpio,
CONFIG_MCR20A_GPIO_IRQ_B_PIN,
GPIO_DIR_IN | GPIO_INT | GPIO_INT_EDGE |
GPIO_PUD_PULL_UP |
GPIO_INT_ACTIVE_LOW);
/* setup gpio for the modems reset */
mcr20a->reset_gpio = device_get_binding(CONFIG_MCR20A_GPIO_RESET_NAME);
if (mcr20a->reset_gpio == NULL) {
LOG_ERR("Failed to get pointer to %s device",
CONFIG_MCR20A_GPIO_RESET_NAME);
return -EINVAL;
}
gpio_pin_configure(mcr20a->reset_gpio, CONFIG_MCR20A_GPIO_RESET_PIN,
GPIO_DIR_OUT);
set_reset(dev, 1);
return 0;
}
static inline int configure_spi(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
mcr20a->spi = device_get_binding(
CONFIG_IEEE802154_MCR20A_SPI_DRV_NAME);
if (!mcr20a->spi) {
LOG_ERR("Unable to get SPI device");
return -ENODEV;
}
#if defined(CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS)
mcr20a->cs_ctrl.gpio_dev = device_get_binding(
CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_DRV_NAME);
if (!mcr20a->cs_ctrl.gpio_dev) {
LOG_ERR("Unable to get GPIO SPI CS device");
return -ENODEV;
}
mcr20a->cs_ctrl.gpio_pin = CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_PIN;
mcr20a->cs_ctrl.delay = 0;
mcr20a->spi_cfg.cs = &mcr20a->cs_ctrl;
LOG_DBG("SPI GPIO CS configured on %s:%u",
CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_DRV_NAME,
CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS_PIN);
#endif /* CONFIG_IEEE802154_MCR20A_GPIO_SPI_CS */
mcr20a->spi_cfg.frequency = CONFIG_IEEE802154_MCR20A_SPI_FREQ;
mcr20a->spi_cfg.operation = SPI_WORD_SET(8);
mcr20a->spi_cfg.slave = CONFIG_IEEE802154_MCR20A_SPI_SLAVE;
LOG_DBG("SPI configured %s, %d",
CONFIG_IEEE802154_MCR20A_SPI_DRV_NAME,
CONFIG_IEEE802154_MCR20A_SPI_SLAVE);
return 0;
}
static int mcr20a_init(struct device *dev)
{
struct mcr20a_context *mcr20a = dev->driver_data;
k_mutex_init(&mcr20a->phy_mutex);
k_sem_init(&mcr20a->isr_sem, 0, 1);
LOG_DBG("\nInitialize MCR20A Transceiver\n");
if (configure_gpios(dev) != 0) {
LOG_ERR("Configuring GPIOS failed");
return -EIO;
}
if (configure_spi(dev) != 0) {
LOG_ERR("Configuring SPI failed");
return -EIO;
}
LOG_DBG("GPIO and SPI configured");
if (power_on_and_setup(dev) != 0) {
LOG_ERR("Configuring MCR20A failed");
return -EIO;
}
k_thread_create(&mcr20a->mcr20a_rx_thread, mcr20a->mcr20a_rx_stack,
CONFIG_IEEE802154_MCR20A_RX_STACK_SIZE,
(k_thread_entry_t)mcr20a_thread_main,
dev, NULL, NULL, K_PRIO_COOP(2), 0, 0);
return 0;
}
static void mcr20a_iface_init(struct net_if *iface)
{
struct device *dev = net_if_get_device(iface);
struct mcr20a_context *mcr20a = dev->driver_data;
u8_t *mac = get_mac(dev);
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
mcr20a->iface = iface;
ieee802154_init(iface);
LOG_DBG("done");
}
static struct mcr20a_context mcr20a_context_data;
static struct ieee802154_radio_api mcr20a_radio_api = {
.iface_api.init = mcr20a_iface_init,
.iface_api.send = ieee802154_radio_send,
.get_capabilities = mcr20a_get_capabilities,
.cca = mcr20a_cca,
.set_channel = mcr20a_set_channel,
.filter = mcr20a_filter,
.set_txpower = mcr20a_set_txpower,
.start = mcr20a_start,
.stop = mcr20a_stop,
.tx = mcr20a_tx,
};
#if defined(CONFIG_IEEE802154_RAW_MODE)
DEVICE_AND_API_INIT(mcr20a, CONFIG_IEEE802154_MCR20A_DRV_NAME,
mcr20a_init, &mcr20a_context_data, NULL,
POST_KERNEL, CONFIG_IEEE802154_MCR20A_INIT_PRIO,
&mcr20a_radio_api);
#else
NET_DEVICE_INIT(mcr20a, CONFIG_IEEE802154_MCR20A_DRV_NAME,
mcr20a_init, &mcr20a_context_data, NULL,
CONFIG_IEEE802154_MCR20A_INIT_PRIO,
&mcr20a_radio_api, IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2),
MCR20A_PSDU_LENGTH);
#endif