zephyr/arch/x86/core/userspace.c

204 lines
6.2 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/speculation.h>
#include <zephyr/internal/syscall_handler.h>
#include <kernel_arch_func.h>
#include <ksched.h>
#include <x86_mmu.h>
BUILD_ASSERT((CONFIG_PRIVILEGED_STACK_SIZE > 0) &&
(CONFIG_PRIVILEGED_STACK_SIZE % CONFIG_MMU_PAGE_SIZE) == 0);
#ifdef CONFIG_DEMAND_PAGING
#include <zephyr/kernel/mm/demand_paging.h>
#endif
#ifndef CONFIG_X86_KPTI
/* Update the to the incoming thread's page table, and update the location of
* the privilege elevation stack.
*
* May be called ONLY during context switch. Hot code path!
*
* Nothing to do here if KPTI is enabled. We are in supervisor mode, so the
* active page tables are the kernel's page tables. If the incoming thread is
* in user mode we are going to switch CR3 to the domain-specific tables when
* we go through z_x86_trampoline_to_user.
*
* We don't need to update the privilege mode initial stack pointer either,
* privilege elevation always lands on the trampoline stack and the irq/syscall
* code has to manually transition off of it to the appropriate stack after
* switching page tables.
*/
__pinned_func
void z_x86_swap_update_page_tables(struct k_thread *incoming)
{
#ifndef CONFIG_X86_64
/* Set initial stack pointer when elevating privileges from Ring 3
* to Ring 0.
*/
_main_tss.esp0 = (uintptr_t)incoming->arch.psp;
#endif
#ifdef CONFIG_X86_COMMON_PAGE_TABLE
z_x86_swap_update_common_page_table(incoming);
#else
/* Check first that we actually need to do this, since setting
* CR3 involves an expensive full TLB flush.
*/
uintptr_t ptables_phys = incoming->arch.ptables;
__ASSERT(ptables_phys != 0, "NULL page tables for thread %p\n",
incoming);
if (ptables_phys != z_x86_cr3_get()) {
z_x86_cr3_set(ptables_phys);
}
#endif /* CONFIG_X86_COMMON_PAGE_TABLE */
}
#endif /* CONFIG_X86_KPTI */
/* Preparation steps needed for all threads if user mode is turned on.
*
* Returns the initial entry point to swap into.
*/
void *z_x86_userspace_prepare_thread(struct k_thread *thread)
{
void *initial_entry;
if (z_stack_is_user_capable(thread->stack_obj)) {
struct z_x86_thread_stack_header *header =
#ifdef CONFIG_THREAD_STACK_MEM_MAPPED
(struct z_x86_thread_stack_header *)thread->stack_info.mapped.addr;
#else
(struct z_x86_thread_stack_header *)thread->stack_obj;
#endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
thread->arch.psp = header->privilege_stack + sizeof(header->privilege_stack);
} else {
thread->arch.psp = NULL;
}
#ifndef CONFIG_X86_COMMON_PAGE_TABLE
/* Important this gets cleared, so that arch_mem_domain_* APIs
* can distinguish between new threads, and threads migrating
* between domains
*/
thread->arch.ptables = (uintptr_t)NULL;
#endif /* CONFIG_X86_COMMON_PAGE_TABLE */
if ((thread->base.user_options & K_USER) != 0U) {
initial_entry = arch_user_mode_enter;
#ifdef CONFIG_INIT_STACKS
/* setup_thread_stack() does not initialize the architecture specific
* privileged stack. So we need to do it manually here as this function
* is called by arch_new_thread() via z_setup_new_thread() after
* setup_thread_stack() but before thread starts running.
*
* Note that only user threads have privileged stacks and kernel
* only threads do not.
*
* Also note that this needs to be done before calling
* z_x86_userspace_enter() where it clears the user stack.
* That function requires using the privileged stack for
* code execution so we cannot clear that at the same time.
*/
struct z_x86_thread_stack_header *hdr_stack_obj =
(struct z_x86_thread_stack_header *)thread->stack_obj;
(void)memset(&hdr_stack_obj->privilege_stack[0], 0xaa,
sizeof(hdr_stack_obj->privilege_stack));
#endif
} else {
initial_entry = z_thread_entry;
}
return initial_entry;
}
FUNC_NORETURN void arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
size_t stack_end;
/* Transition will reset stack pointer to initial, discarding
* any old context since this is a one-way operation
*/
stack_end = Z_STACK_PTR_ALIGN(_current->stack_info.start +
_current->stack_info.size -
_current->stack_info.delta);
#ifdef CONFIG_X86_64
/* x86_64 SysV ABI requires 16 byte stack alignment, which
* means that on entry to a C function (which follows a CALL
* that pushes 8 bytes) the stack must be MISALIGNED by
* exactly 8 bytes.
*/
stack_end -= 8;
#endif
#if defined(CONFIG_DEMAND_PAGING) && \
!defined(CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT)
/* If generic section is not present at boot,
* the thread stack may not be in physical memory.
* Unconditionally page in the stack instead of
* relying on page fault to speed up a little bit
* on starting the thread.
*
* Note that this also needs to page in the reserved
* portion of the stack (which is usually the page just
* before the beginning of stack in
* _current->stack_info.start.
*/
uintptr_t stack_start;
size_t stack_size;
uintptr_t stack_aligned_start;
size_t stack_aligned_size;
stack_start = POINTER_TO_UINT(_current->stack_obj);
stack_size = K_THREAD_STACK_LEN(_current->stack_info.size);
#if defined(CONFIG_X86_STACK_PROTECTION)
/* With hardware stack protection, the first page of stack
* is a guard page. So need to skip it.
*/
stack_start += CONFIG_MMU_PAGE_SIZE;
stack_size -= CONFIG_MMU_PAGE_SIZE;
#endif
(void)k_mem_region_align(&stack_aligned_start, &stack_aligned_size,
stack_start, stack_size,
CONFIG_MMU_PAGE_SIZE);
k_mem_page_in(UINT_TO_POINTER(stack_aligned_start),
stack_aligned_size);
#endif
z_x86_userspace_enter(user_entry, p1, p2, p3, stack_end,
_current->stack_info.start);
CODE_UNREACHABLE;
}
int arch_thread_priv_stack_space_get(const struct k_thread *thread, size_t *stack_size,
size_t *unused_ptr)
{
struct z_x86_thread_stack_header *hdr_stack_obj;
if ((thread->base.user_options & K_USER) != K_USER) {
return -EINVAL;
}
hdr_stack_obj = (struct z_x86_thread_stack_header *)thread->stack_obj;
return z_stack_space_get(&hdr_stack_obj->privilege_stack[0],
sizeof(hdr_stack_obj->privilege_stack),
unused_ptr);
}