zephyr/drivers/sensor/bmi160/bmi160_trigger.c

314 lines
7.6 KiB
C

/* Bosch BMI160 inertial measurement unit driver, trigger implementation
*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <sensor.h>
#include <gpio.h>
#include "bmi160.h"
static void bmi160_handle_anymotion(struct device *dev)
{
struct bmi160_device_data *bmi160 = dev->driver_data;
struct sensor_trigger anym_trigger = {
.type = SENSOR_TRIG_DELTA,
.chan = SENSOR_CHAN_ACCEL_XYZ,
};
if (bmi160->handler_anymotion) {
bmi160->handler_anymotion(dev, &anym_trigger);
}
}
static void bmi160_handle_drdy(struct device *dev, u8_t status)
{
struct bmi160_device_data *bmi160 = dev->driver_data;
struct sensor_trigger drdy_trigger = {
.type = SENSOR_TRIG_DATA_READY,
};
#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
if (bmi160->handler_drdy_acc && (status & BMI160_STATUS_ACC_DRDY)) {
drdy_trigger.chan = SENSOR_CHAN_ACCEL_XYZ;
bmi160->handler_drdy_acc(dev, &drdy_trigger);
}
#endif
#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
if (bmi160->handler_drdy_gyr && (status & BMI160_STATUS_GYR_DRDY)) {
drdy_trigger.chan = SENSOR_CHAN_GYRO_XYZ;
bmi160->handler_drdy_gyr(dev, &drdy_trigger);
}
#endif
}
static void bmi160_handle_interrupts(void *arg)
{
struct device *dev = (struct device *)arg;
union {
u8_t raw[6];
struct {
u8_t dummy; /* spi related dummy byte */
u8_t status;
u8_t int_status[4];
};
} buf;
if (bmi160_read(dev, BMI160_REG_STATUS, buf.raw, sizeof(buf)) < 0) {
return;
}
if ((buf.int_status[0] & BMI160_INT_STATUS0_ANYM) &&
(buf.int_status[2] & (BMI160_INT_STATUS2_ANYM_FIRST_X |
BMI160_INT_STATUS2_ANYM_FIRST_Y |
BMI160_INT_STATUS2_ANYM_FIRST_Z))) {
bmi160_handle_anymotion(dev);
}
if (buf.int_status[1] & BMI160_INT_STATUS1_DRDY) {
bmi160_handle_drdy(dev, buf.status);
}
}
#ifdef CONFIG_BMI160_TRIGGER_OWN_THREAD
static char __stack bmi160_thread_stack[CONFIG_BMI160_THREAD_STACK_SIZE];
static struct k_thread bmi160_thread;
static void bmi160_thread_main(void *arg1, void *unused1, void *unused2)
{
ARG_UNUSED(unused1);
ARG_UNUSED(unused2);
struct device *dev = (struct device *)arg1;
struct bmi160_device_data *bmi160 = dev->driver_data;
while (1) {
k_sem_take(&bmi160->sem, K_FOREVER);
bmi160_handle_interrupts(dev);
}
}
#endif
#ifdef CONFIG_BMI160_TRIGGER_GLOBAL_THREAD
static void bmi160_work_handler(struct k_work *work)
{
struct bmi160_device_data *bmi160 =
CONTAINER_OF(work, struct bmi160_device_data, work);
bmi160_handle_interrupts(bmi160->dev);
}
#endif
extern struct bmi160_device_data bmi160_data;
static void bmi160_gpio_callback(struct device *port,
struct gpio_callback *cb, u32_t pin)
{
struct bmi160_device_data *bmi160 =
CONTAINER_OF(cb, struct bmi160_device_data, gpio_cb);
ARG_UNUSED(port);
ARG_UNUSED(pin);
#if defined(CONFIG_BMI160_TRIGGER_OWN_THREAD)
k_sem_give(&bmi160->sem);
#elif defined(CONFIG_BMI160_TRIGGER_GLOBAL_THREAD)
k_work_submit(&bmi160->work);
#endif
}
static int bmi160_trigger_drdy_set(struct device *dev,
enum sensor_channel chan,
sensor_trigger_handler_t handler)
{
struct bmi160_device_data *bmi160 = dev->driver_data;
u8_t drdy_en = 0;
#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
if (chan == SENSOR_CHAN_ACCEL_XYZ) {
bmi160->handler_drdy_acc = handler;
}
if (bmi160->handler_drdy_acc) {
drdy_en = BMI160_INT_DRDY_EN;
}
#endif
#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
if (chan == SENSOR_CHAN_GYRO_XYZ) {
bmi160->handler_drdy_gyr = handler;
}
if (bmi160->handler_drdy_gyr) {
drdy_en = BMI160_INT_DRDY_EN;
}
#endif
if (bmi160_reg_update(dev, BMI160_REG_INT_EN1,
BMI160_INT_DRDY_EN, drdy_en) < 0) {
return -EIO;
}
return 0;
}
#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
static int bmi160_trigger_anym_set(struct device *dev,
sensor_trigger_handler_t handler)
{
struct bmi160_device_data *bmi160 = dev->driver_data;
u8_t anym_en = 0;
bmi160->handler_anymotion = handler;
if (handler) {
anym_en = BMI160_INT_ANYM_X_EN |
BMI160_INT_ANYM_Y_EN |
BMI160_INT_ANYM_Z_EN;
}
if (bmi160_reg_update(dev, BMI160_REG_INT_EN0,
BMI160_INT_ANYM_MASK, anym_en) < 0) {
return -EIO;
}
return 0;
}
static int bmi160_trigger_set_acc(struct device *dev,
const struct sensor_trigger *trig,
sensor_trigger_handler_t handler)
{
if (trig->type == SENSOR_TRIG_DATA_READY) {
return bmi160_trigger_drdy_set(dev, trig->chan, handler);
} else if (trig->type == SENSOR_TRIG_DELTA) {
return bmi160_trigger_anym_set(dev, handler);
}
return -ENOTSUP;
}
int bmi160_acc_slope_config(struct device *dev, enum sensor_attribute attr,
const struct sensor_value *val)
{
u8_t acc_range_g, reg_val;
u32_t slope_th_ums2;
if (attr == SENSOR_ATTR_SLOPE_TH) {
if (bmi160_byte_read(dev, BMI160_REG_ACC_RANGE, &reg_val) < 0) {
return -EIO;
}
acc_range_g = bmi160_acc_reg_val_to_range(reg_val);
slope_th_ums2 = val->val1 * 1000000 + val->val2;
/* make sure the provided threshold does not exceed range / 2 */
if (slope_th_ums2 > (acc_range_g / 2 * SENSOR_G)) {
return -EINVAL;
}
reg_val = 512 * (slope_th_ums2 - 1) / (acc_range_g * SENSOR_G);
if (bmi160_byte_write(dev, BMI160_REG_INT_MOTION1,
reg_val) < 0) {
return -EIO;
}
} else { /* SENSOR_ATTR_SLOPE_DUR */
/* slope duration is measured in number of samples */
if (val->val1 < 1 || val->val1 > 4) {
return -ENOTSUP;
}
if (bmi160_reg_field_update(dev, BMI160_REG_INT_MOTION0,
BMI160_ANYM_DUR_POS,
BMI160_ANYM_DUR_MASK,
val->val1) < 0) {
return -EIO;
}
}
return 0;
}
#endif
#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
static int bmi160_trigger_set_gyr(struct device *dev,
const struct sensor_trigger *trig,
sensor_trigger_handler_t handler)
{
if (trig->type == SENSOR_TRIG_DATA_READY) {
return bmi160_trigger_drdy_set(dev, trig->chan, handler);
}
return -ENOTSUP;
}
#endif
int bmi160_trigger_set(struct device *dev,
const struct sensor_trigger *trig,
sensor_trigger_handler_t handler)
{
#if !defined(CONFIG_BMI160_ACCEL_PMU_SUSPEND)
if (trig->chan == SENSOR_CHAN_ACCEL_XYZ) {
return bmi160_trigger_set_acc(dev, trig, handler);
}
#endif
#if !defined(CONFIG_BMI160_GYRO_PMU_SUSPEND)
if (trig->chan == SENSOR_CHAN_GYRO_XYZ) {
return bmi160_trigger_set_gyr(dev, trig, handler);
}
#endif
return -ENOTSUP;
}
int bmi160_trigger_mode_init(struct device *dev)
{
struct bmi160_device_data *bmi160 = dev->driver_data;
const struct bmi160_device_config *cfg = dev->config->config_info;
bmi160->gpio = device_get_binding((char *)cfg->gpio_port);
if (!bmi160->gpio) {
SYS_LOG_DBG("Gpio controller %s not found.", cfg->gpio_port);
return -EINVAL;
}
#if defined(CONFIG_BMI160_TRIGGER_OWN_THREAD)
k_sem_init(&bmi160->sem, 0, UINT_MAX);
k_thread_create(&bmi160_thread, bmi160_thread_stack,
CONFIG_BMI160_THREAD_STACK_SIZE,
bmi160_thread_main, dev, NULL, NULL,
K_PRIO_COOP(CONFIG_BMI160_THREAD_PRIORITY), 0, 0);
#elif defined(CONFIG_BMI160_TRIGGER_GLOBAL_THREAD)
bmi160->work.handler = bmi160_work_handler;
bmi160->dev = dev;
#endif
/* map all interrupts to INT1 pin */
if (bmi160_word_write(dev, BMI160_REG_INT_MAP0, 0xf0ff) < 0) {
SYS_LOG_DBG("Failed to map interrupts.");
return -EIO;
}
gpio_pin_configure(bmi160->gpio, cfg->int_pin,
GPIO_DIR_IN | GPIO_INT | GPIO_INT_EDGE |
GPIO_INT_ACTIVE_LOW | GPIO_INT_DEBOUNCE);
gpio_init_callback(&bmi160->gpio_cb,
bmi160_gpio_callback,
BIT(cfg->int_pin));
gpio_add_callback(bmi160->gpio, &bmi160->gpio_cb);
gpio_pin_enable_callback(bmi160->gpio, cfg->int_pin);
return bmi160_byte_write(dev, BMI160_REG_INT_OUT_CTRL,
BMI160_INT1_OUT_EN | BMI160_INT1_EDGE_CTRL);
}