zephyr/drivers/usb/device/usb_dc_sam_usbhs.c

937 lines
23 KiB
C

/*
* Copyright (c) 2018 Aurelien Jarno <aurelien@aurel32.net>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_usbhs
#include <zephyr/usb/usb_device.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#include <zephyr/irq.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/barrier.h>
#include <soc.h>
#include <string.h>
#define LOG_LEVEL CONFIG_USB_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(usb_dc_sam_usbhs);
/*
* This is defined in the support files for the SAM S7x, but not for
* the SAM E7x nor SAM V7x.
*/
#ifndef USBHS_RAM_ADDR
#define USBHS_RAM_ADDR (0xA0100000)
#endif
/*
* The new Atmel DFP headers provide mode-specific interrupt register field
* definitions. Map the existing generic definitions to these.
*/
#ifndef USBHS_DEVEPTISR_CTRL_RXSTPI
#define USBHS_DEVEPTISR_CTRL_RXSTPI USBHS_DEVEPTISR_RXSTPI
#endif
#ifndef USBHS_DEVEPTICR_CTRL_RXSTPIC
#define USBHS_DEVEPTICR_CTRL_RXSTPIC USBHS_DEVEPTICR_RXSTPIC
#endif
#ifndef USBHS_DEVEPTIMR_CTRL_STALLRQ
#define USBHS_DEVEPTIMR_CTRL_STALLRQ USBHS_DEVEPTIMR_STALLRQ
#endif
#ifndef USBHS_DEVEPTIER_CTRL_RXSTPES
#define USBHS_DEVEPTIER_CTRL_RXSTPES USBHS_DEVEPTIER_RXSTPES
#endif
#ifndef USBHS_DEVEPTIER_CTRL_STALLRQS
#define USBHS_DEVEPTIER_CTRL_STALLRQS USBHS_DEVEPTIER_STALLRQS
#endif
#ifndef USBHS_DEVEPTIDR_CTRL_STALLRQC
#define USBHS_DEVEPTIDR_CTRL_STALLRQC USBHS_DEVEPTIDR_STALLRQC
#endif
#define NUM_OF_EP_MAX DT_INST_PROP(0, num_bidir_endpoints)
#define USB_MAXIMUM_SPEED DT_INST_ENUM_IDX_OR(0, maximum_speed, 1)
BUILD_ASSERT(USB_MAXIMUM_SPEED, "low-speed is not supported");
struct usb_device_ep_data {
uint16_t mps;
usb_dc_ep_callback cb_in;
usb_dc_ep_callback cb_out;
uint8_t *fifo;
};
struct usb_device_data {
bool addr_enabled;
usb_dc_status_callback status_cb;
struct usb_device_ep_data ep_data[NUM_OF_EP_MAX];
};
static struct usb_device_data dev_data;
/* Enable the USB device clock */
static void usb_dc_enable_clock(void)
{
/* Start the USB PLL */
PMC->CKGR_UCKR |= CKGR_UCKR_UPLLEN;
/* Wait for it to be ready */
while (!(PMC->PMC_SR & PMC_SR_LOCKU)) {
k_yield();
}
/* In low power mode, provide a 48MHZ clock instead of the 480MHz one */
if ((USBHS->USBHS_DEVCTRL & USBHS_DEVCTRL_SPDCONF_Msk)
== USBHS_DEVCTRL_SPDCONF_LOW_POWER) {
/* Configure the USB_48M clock to be UPLLCK/10 */
PMC->PMC_MCKR &= ~PMC_MCKR_UPLLDIV2;
PMC->PMC_USB = PMC_USB_USBDIV(9) | PMC_USB_USBS;
/* Enable USB_48M clock */
PMC->PMC_SCER |= PMC_SCER_USBCLK;
}
}
/* Disable the USB device clock */
static void usb_dc_disable_clock(void)
{
/* Disable USB_48M clock */
PMC->PMC_SCER &= ~PMC_SCER_USBCLK;
/* Disable the USB PLL */
PMC->CKGR_UCKR &= ~CKGR_UCKR_UPLLEN;
}
/* Check if the USB device is attached */
static bool usb_dc_is_attached(void)
{
return (USBHS->USBHS_DEVCTRL & USBHS_DEVCTRL_DETACH) == 0;
}
/* Check if an endpoint is configured */
static bool usb_dc_ep_is_configured(uint8_t ep_idx)
{
return USBHS->USBHS_DEVEPTISR[ep_idx] & USBHS_DEVEPTISR_CFGOK;
}
/* Check if an endpoint is enabled */
static bool usb_dc_ep_is_enabled(uint8_t ep_idx)
{
return USBHS->USBHS_DEVEPT & BIT(USBHS_DEVEPT_EPEN0_Pos + ep_idx);
}
/* Reset and endpoint */
static void usb_dc_ep_reset(uint8_t ep_idx)
{
USBHS->USBHS_DEVEPT |= BIT(USBHS_DEVEPT_EPRST0_Pos + ep_idx);
USBHS->USBHS_DEVEPT &= ~BIT(USBHS_DEVEPT_EPRST0_Pos + ep_idx);
barrier_dsync_fence_full();
}
/* Enable endpoint interrupts, depending of the type and direction */
static void usb_dc_ep_enable_interrupts(uint8_t ep_idx)
{
if (ep_idx == 0U) {
/* Control endpoint: enable SETUP and OUT */
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_CTRL_RXSTPES;
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_RXOUTES;
} else if ((USBHS->USBHS_DEVEPTCFG[ep_idx] & USBHS_DEVEPTCFG_EPDIR_Msk)
== USBHS_DEVEPTCFG_EPDIR_IN) {
/* IN direction: acknowledge FIFO empty interrupt */
USBHS->USBHS_DEVEPTICR[ep_idx] = USBHS_DEVEPTICR_TXINIC;
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_TXINES;
} else {
/* OUT direction */
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_RXOUTES;
}
}
/* Reset the endpoint FIFO pointer to the beginning of the endpoint memory */
static void usb_dc_ep_fifo_reset(uint8_t ep_idx)
{
uint8_t *p;
p = (uint8_t *)(USBHS_RAM_ADDR + 0x8000 * ep_idx);
dev_data.ep_data[ep_idx].fifo = p;
}
/* Fetch a byte from the endpoint FIFO */
static uint8_t usb_dc_ep_fifo_get(uint8_t ep_idx)
{
return *(dev_data.ep_data[ep_idx].fifo++);
}
/* Put a byte from the endpoint FIFO */
static void usb_dc_ep_fifo_put(uint8_t ep_idx, uint8_t data)
{
*(dev_data.ep_data[ep_idx].fifo++) = data;
}
/* Handle interrupts on a control endpoint */
static void usb_dc_ep0_isr(void)
{
uint32_t sr = USBHS->USBHS_DEVEPTISR[0] & USBHS->USBHS_DEVEPTIMR[0];
uint32_t dev_ctrl = USBHS->USBHS_DEVCTRL;
if (sr & USBHS_DEVEPTISR_CTRL_RXSTPI) {
/* SETUP data received */
usb_dc_ep_fifo_reset(0);
dev_data.ep_data[0].cb_out(USB_EP_DIR_OUT, USB_DC_EP_SETUP);
}
if (sr & USBHS_DEVEPTISR_RXOUTI) {
/* OUT (to device) data received */
usb_dc_ep_fifo_reset(0);
dev_data.ep_data[0].cb_out(USB_EP_DIR_OUT, USB_DC_EP_DATA_OUT);
}
if (sr & USBHS_DEVEPTISR_TXINI) {
/* Disable the interrupt */
USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_TXINEC;
/* IN (to host) transmit complete */
usb_dc_ep_fifo_reset(0);
dev_data.ep_data[0].cb_in(USB_EP_DIR_IN, USB_DC_EP_DATA_IN);
if (!(dev_ctrl & USBHS_DEVCTRL_ADDEN) &&
(dev_ctrl & USBHS_DEVCTRL_UADD_Msk) != 0U) {
/* Commit the pending address update. This
* must be done after the ack to the host
* completes else the ack will get dropped.
*/
USBHS->USBHS_DEVCTRL = dev_ctrl | USBHS_DEVCTRL_ADDEN;
}
}
}
/* Handle interrupts on a non-control endpoint */
static void usb_dc_ep_isr(uint8_t ep_idx)
{
uint32_t sr = USBHS->USBHS_DEVEPTISR[ep_idx] &
USBHS->USBHS_DEVEPTIMR[ep_idx];
if (sr & USBHS_DEVEPTISR_RXOUTI) {
uint8_t ep = ep_idx | USB_EP_DIR_OUT;
/* Acknowledge the interrupt */
USBHS->USBHS_DEVEPTICR[ep_idx] = USBHS_DEVEPTICR_RXOUTIC;
/* OUT (to device) data received */
usb_dc_ep_fifo_reset(ep_idx);
dev_data.ep_data[ep_idx].cb_out(ep, USB_DC_EP_DATA_OUT);
}
if (sr & USBHS_DEVEPTISR_TXINI) {
uint8_t ep = ep_idx | USB_EP_DIR_IN;
/* Acknowledge the interrupt */
USBHS->USBHS_DEVEPTICR[ep_idx] = USBHS_DEVEPTICR_TXINIC;
/* IN (to host) transmit complete */
usb_dc_ep_fifo_reset(ep_idx);
dev_data.ep_data[ep_idx].cb_in(ep, USB_DC_EP_DATA_IN);
}
}
/* Top level interrupt handler */
static void usb_dc_isr(void)
{
uint32_t sr = USBHS->USBHS_DEVISR & USBHS->USBHS_DEVIMR;
/* End of resume interrupt */
if (sr & USBHS_DEVISR_EORSM) {
/* Acknowledge the interrupt */
USBHS->USBHS_DEVICR = USBHS_DEVICR_EORSMC;
/* Callback function */
dev_data.status_cb(USB_DC_RESUME, NULL);
}
/* End of reset interrupt */
if (sr & USBHS_DEVISR_EORST) {
/* Acknowledge the interrupt */
USBHS->USBHS_DEVICR = USBHS_DEVICR_EORSTC;
if (!usb_dc_ep_is_configured(0) && dev_data.ep_data[0].mps) {
/* Restore EP0 configuration to previously set mps */
struct usb_dc_ep_cfg_data cfg = {
.ep_addr = 0,
.ep_mps = dev_data.ep_data[0].mps,
.ep_type = USB_DC_EP_CONTROL,
};
usb_dc_ep_configure(&cfg);
usb_dc_ep_enable(0);
}
if (usb_dc_ep_is_enabled(0)) {
/* The device clears some of the configuration of EP0
* when it receives the EORST. Re-enable interrupts.
*/
usb_dc_ep_enable_interrupts(0);
}
/* Free all endpoint memory */
for (int idx = 1; idx < NUM_OF_EP_MAX; idx++) {
usb_dc_ep_disable(idx);
USBHS->USBHS_DEVEPTCFG[idx] &= ~USBHS_DEVEPTCFG_ALLOC;
}
/* Callback function */
dev_data.status_cb(USB_DC_RESET, NULL);
}
/* Suspend interrupt */
if (sr & USBHS_DEVISR_SUSP) {
/* Acknowledge the interrupt */
USBHS->USBHS_DEVICR = USBHS_DEVICR_SUSPC;
/* Callback function */
dev_data.status_cb(USB_DC_SUSPEND, NULL);
}
#ifdef CONFIG_USB_DEVICE_SOF
/* SOF interrupt */
if (sr & USBHS_DEVISR_SOF) {
/* Acknowledge the interrupt */
USBHS->USBHS_DEVICR = USBHS_DEVICR_SOFC;
/* Callback function */
dev_data.status_cb(USB_DC_SOF, NULL);
}
#endif
/* EP0 endpoint interrupt */
if (sr & USBHS_DEVISR_PEP_0) {
usb_dc_ep0_isr();
}
/* Other endpoints interrupt */
for (int ep_idx = 1; ep_idx < NUM_OF_EP_MAX; ep_idx++) {
if (sr & BIT(USBHS_DEVISR_PEP_0_Pos + ep_idx)) {
usb_dc_ep_isr(ep_idx);
}
}
}
/* Attach USB for device connection */
int usb_dc_attach(void)
{
const struct atmel_sam_pmc_config clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(0);
uint32_t regval;
/* Enable USBHS clock in PMC */
(void)clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&clock_cfg);
/* Enable the USB controller in device mode with the clock frozen */
USBHS->USBHS_CTRL = USBHS_CTRL_UIMOD | USBHS_CTRL_USBE |
USBHS_CTRL_FRZCLK;
barrier_dsync_fence_full();
/* Select the speed */
regval = USBHS_DEVCTRL_DETACH;
#if (USB_MAXIMUM_SPEED == 2) && IS_ENABLED(CONFIG_USB_DC_HAS_HS_SUPPORT)
/* high-speed */
regval |= USBHS_DEVCTRL_SPDCONF_NORMAL;
#else
/* full-speed */
regval |= USBHS_DEVCTRL_SPDCONF_LOW_POWER;
#endif
USBHS->USBHS_DEVCTRL = regval;
/* Enable the USB clock */
usb_dc_enable_clock();
/* Unfreeze the clock */
USBHS->USBHS_CTRL = USBHS_CTRL_UIMOD | USBHS_CTRL_USBE;
/* Enable device interrupts */
USBHS->USBHS_DEVIER = USBHS_DEVIER_EORSMES;
USBHS->USBHS_DEVIER = USBHS_DEVIER_EORSTES;
USBHS->USBHS_DEVIER = USBHS_DEVIER_SUSPES;
#ifdef CONFIG_USB_DEVICE_SOF
USBHS->USBHS_DEVIER = USBHS_DEVIER_SOFES;
#endif
/* Connect and enable the interrupt */
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
usb_dc_isr, 0, 0);
irq_enable(DT_INST_IRQN(0));
/* Attach the device */
USBHS->USBHS_DEVCTRL &= ~USBHS_DEVCTRL_DETACH;
LOG_DBG("");
return 0;
}
/* Detach the USB device */
int usb_dc_detach(void)
{
const struct atmel_sam_pmc_config clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(0);
/* Detach the device */
USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_DETACH;
/* Disable the USB clock */
usb_dc_disable_clock();
/* Disable the USB controller and freeze the clock */
USBHS->USBHS_CTRL = USBHS_CTRL_UIMOD | USBHS_CTRL_FRZCLK;
/* Disable USBHS clock in PMC */
(void)clock_control_off(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&clock_cfg);
/* Disable interrupt */
irq_disable(DT_INST_IRQN(0));
LOG_DBG("");
return 0;
}
/* Reset the USB device */
int usb_dc_reset(void)
{
/* Reset the controller */
USBHS->USBHS_CTRL = USBHS_CTRL_UIMOD | USBHS_CTRL_FRZCLK;
/* Clear private data */
(void)memset(&dev_data, 0, sizeof(dev_data));
LOG_DBG("");
return 0;
}
/* Set USB device address */
int usb_dc_set_address(uint8_t addr)
{
/*
* Set the address but keep it disabled for now. It should be enabled
* only after the ack to the host completes.
*/
USBHS->USBHS_DEVCTRL &= ~(USBHS_DEVCTRL_UADD_Msk | USBHS_DEVCTRL_ADDEN);
USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_UADD(addr);
LOG_DBG("");
return 0;
}
/* Set USB device controller status callback */
void usb_dc_set_status_callback(const usb_dc_status_callback cb)
{
LOG_DBG("");
dev_data.status_cb = cb;
}
/* Check endpoint capabilities */
int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data * const cfg)
{
uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("endpoint index/address out of range");
return -1;
}
if (ep_idx == 0U) {
if (cfg->ep_type != USB_DC_EP_CONTROL) {
LOG_ERR("pre-selected as control endpoint");
return -1;
}
} else if (ep_idx & BIT(0)) {
if (USB_EP_GET_DIR(cfg->ep_addr) != USB_EP_DIR_IN) {
LOG_INF("pre-selected as IN endpoint");
return -1;
}
} else {
if (USB_EP_GET_DIR(cfg->ep_addr) != USB_EP_DIR_OUT) {
LOG_INF("pre-selected as OUT endpoint");
return -1;
}
}
if (cfg->ep_mps < 1 || cfg->ep_mps > 1024 ||
(cfg->ep_type == USB_DC_EP_CONTROL && cfg->ep_mps > 64)) {
LOG_ERR("invalid endpoint size");
return -1;
}
return 0;
}
/* Configure endpoint */
int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const cfg)
{
uint8_t ep_idx = USB_EP_GET_IDX(cfg->ep_addr);
bool ep_configured[NUM_OF_EP_MAX];
bool ep_enabled[NUM_OF_EP_MAX];
uint32_t regval = 0U;
int log2ceil_mps;
if (usb_dc_ep_check_cap(cfg) != 0) {
return -EINVAL;
}
if (!usb_dc_is_attached()) {
LOG_ERR("device not attached");
return -ENODEV;
}
if (usb_dc_ep_is_enabled(ep_idx)) {
LOG_WRN("endpoint already configured & enabled 0x%x", ep_idx);
return -EBUSY;
}
LOG_INF("Configure ep %x, mps %d, type %d", cfg->ep_addr, cfg->ep_mps,
cfg->ep_type);
/* Reset the endpoint */
usb_dc_ep_reset(ep_idx);
/* Initialize the endpoint FIFO */
usb_dc_ep_fifo_reset(ep_idx);
/* Map the endpoint type */
switch (cfg->ep_type) {
case USB_DC_EP_CONTROL:
regval |= USBHS_DEVEPTCFG_EPTYPE_CTRL;
break;
case USB_DC_EP_ISOCHRONOUS:
regval |= USBHS_DEVEPTCFG_EPTYPE_ISO;
break;
case USB_DC_EP_BULK:
regval |= USBHS_DEVEPTCFG_EPTYPE_BLK;
break;
case USB_DC_EP_INTERRUPT:
regval |= USBHS_DEVEPTCFG_EPTYPE_INTRPT;
break;
default:
return -EINVAL;
}
/* Map the endpoint direction */
if (USB_EP_DIR_IS_OUT(cfg->ep_addr) ||
cfg->ep_type == USB_DC_EP_CONTROL) {
regval |= USBHS_DEVEPTCFG_EPDIR_OUT;
} else {
regval |= USBHS_DEVEPTCFG_EPDIR_IN;
}
/*
* Map the endpoint size to the buffer size. Only power of 2 buffer
* sizes between 8 and 1024 are possible, get the next power of 2.
*/
log2ceil_mps = 32 - __builtin_clz((MAX(cfg->ep_mps, 8) << 1) - 1) - 1;
regval |= USBHS_DEVEPTCFG_EPSIZE(log2ceil_mps - 3);
dev_data.ep_data[ep_idx].mps = cfg->ep_mps;
/* Use double bank buffering for isochronous endpoints */
if (cfg->ep_type == USB_DC_EP_ISOCHRONOUS) {
regval |= USBHS_DEVEPTCFG_EPBK_2_BANK;
} else {
regval |= USBHS_DEVEPTCFG_EPBK_1_BANK;
}
/* Configure the endpoint */
USBHS->USBHS_DEVEPTCFG[ep_idx] = regval;
/*
* Allocate the memory. This part is a bit tricky as memory can only be
* allocated if all above endpoints are disabled and not allocated. Loop
* backward through the above endpoints, disable them if they are
* enabled, deallocate their memory if needed. Then loop again through
* all the above endpoints to allocate and enabled them.
*/
for (int i = NUM_OF_EP_MAX - 1; i > ep_idx; i--) {
ep_configured[i] = usb_dc_ep_is_configured(i);
ep_enabled[i] = usb_dc_ep_is_enabled(i);
if (ep_enabled[i]) {
LOG_INF("Temporary disable ep idx %x", i);
usb_dc_ep_disable(i);
}
if (ep_configured[i]) {
USBHS->USBHS_DEVEPTCFG[i] &= ~USBHS_DEVEPTCFG_ALLOC;
}
}
ep_configured[ep_idx] = true;
ep_enabled[ep_idx] = false;
for (int i = ep_idx; i < NUM_OF_EP_MAX; i++) {
if (ep_configured[i]) {
USBHS->USBHS_DEVEPTCFG[i] |= USBHS_DEVEPTCFG_ALLOC;
}
if (ep_enabled[i]) {
usb_dc_ep_enable(i);
}
}
/* Check that the endpoint is correctly configured */
if (!usb_dc_ep_is_configured(ep_idx)) {
LOG_ERR("endpoint configuration failed");
return -EINVAL;
}
return 0;
}
/* Set stall condition for the selected endpoint */
int usb_dc_ep_set_stall(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_CTRL_STALLRQS;
LOG_DBG("ep 0x%x", ep);
return 0;
}
/* Clear stall condition for the selected endpoint */
int usb_dc_ep_clear_stall(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
USBHS->USBHS_DEVEPTIDR[ep_idx] = USBHS_DEVEPTIDR_CTRL_STALLRQC;
LOG_DBG("ep 0x%x", ep);
return 0;
}
/* Check if the selected endpoint is stalled */
int usb_dc_ep_is_stalled(uint8_t ep, uint8_t *stalled)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (!stalled) {
return -EINVAL;
}
*stalled = (USBHS->USBHS_DEVEPTIMR[ep_idx] &
USBHS_DEVEPTIMR_CTRL_STALLRQ) != 0;
LOG_DBG("ep 0x%x", ep);
return 0;
}
/* Halt the selected endpoint */
int usb_dc_ep_halt(uint8_t ep)
{
return usb_dc_ep_set_stall(ep);
}
/* Enable the selected endpoint */
int usb_dc_ep_enable(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (!usb_dc_ep_is_configured(ep_idx)) {
LOG_ERR("endpoint not configured");
return -ENODEV;
}
/* Enable endpoint */
USBHS->USBHS_DEVEPT |= BIT(USBHS_DEVEPT_EPEN0_Pos + ep_idx);
/* Enable endpoint interrupts */
USBHS->USBHS_DEVIER = BIT(USBHS_DEVIER_PEP_0_Pos + ep_idx);
/* Enable SETUP, IN or OUT endpoint interrupts */
usb_dc_ep_enable_interrupts(ep_idx);
LOG_INF("Enable ep 0x%x", ep);
return 0;
}
/* Disable the selected endpoint */
int usb_dc_ep_disable(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
/* Disable endpoint interrupt */
USBHS->USBHS_DEVIDR = BIT(USBHS_DEVIDR_PEP_0_Pos + ep_idx);
/* Disable endpoint and SETUP, IN or OUT interrupts */
USBHS->USBHS_DEVEPT &= ~BIT(USBHS_DEVEPT_EPEN0_Pos + ep_idx);
LOG_INF("Disable ep 0x%x", ep);
return 0;
}
/* Flush the selected endpoint */
int usb_dc_ep_flush(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (!usb_dc_ep_is_enabled(ep_idx)) {
LOG_ERR("endpoint not enabled");
return -ENODEV;
}
/* Disable the IN interrupt */
USBHS->USBHS_DEVEPTIDR[ep_idx] = USBHS_DEVEPTIDR_TXINEC;
/* Kill the last written bank if needed */
if (USBHS->USBHS_DEVEPTISR[ep_idx] & USBHS_DEVEPTISR_NBUSYBK_Msk) {
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_KILLBKS;
barrier_dsync_fence_full();
while (USBHS->USBHS_DEVEPTIMR[ep_idx] &
USBHS_DEVEPTIMR_KILLBK) {
k_yield();
}
}
/* Reset the endpoint */
usb_dc_ep_reset(ep_idx);
/* Re-enable interrupts */
usb_dc_ep_enable_interrupts(ep_idx);
LOG_DBG("ep 0x%x", ep);
return 0;
}
/* Write data to the specified endpoint */
int usb_dc_ep_write(uint8_t ep, const uint8_t *data, uint32_t data_len, uint32_t *ret_bytes)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint32_t packet_len;
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (!usb_dc_ep_is_enabled(ep_idx)) {
LOG_ERR("endpoint not enabled");
return -ENODEV;
}
if (USB_EP_GET_DIR(ep) != USB_EP_DIR_IN) {
LOG_ERR("wrong endpoint direction");
return -EINVAL;
}
if ((USBHS->USBHS_DEVEPTIMR[ep_idx] & USBHS_DEVEPTIMR_CTRL_STALLRQ)
!= 0) {
LOG_WRN("endpoint is stalled");
return -EBUSY;
}
/* Write the data to the FIFO */
packet_len = MIN(data_len, dev_data.ep_data[ep_idx].mps);
for (int i = 0; i < packet_len; i++) {
usb_dc_ep_fifo_put(ep_idx, data[i]);
}
barrier_dsync_fence_full();
if (ep_idx == 0U) {
/*
* Control endpoint: clear the interrupt flag to send the data,
* and re-enable the interrupts to trigger an interrupt at the
* end of the transfer.
*/
USBHS->USBHS_DEVEPTICR[ep_idx] = USBHS_DEVEPTICR_TXINIC;
USBHS->USBHS_DEVEPTIER[ep_idx] = USBHS_DEVEPTIER_TXINES;
} else {
/*
* Other endpoint types: clear the FIFO control flag to send
* the data.
*/
USBHS->USBHS_DEVEPTIDR[ep_idx] = USBHS_DEVEPTIDR_FIFOCONC;
}
if (ret_bytes) {
*ret_bytes = packet_len;
}
LOG_DBG("ep 0x%x write %d bytes from %d", ep, packet_len, data_len);
return 0;
}
/* Read data from the specified endpoint */
int usb_dc_ep_read(uint8_t ep, uint8_t *data, uint32_t max_data_len, uint32_t *read_bytes)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
int rc;
rc = usb_dc_ep_read_wait(ep, data, max_data_len, read_bytes);
if (rc) {
return rc;
}
if (!data && !max_data_len) {
/* When both buffer and max data to read are zero the above
* call would fetch the data len and we simply return.
*/
return 0;
}
/* If the packet has been read entirely, get the next one */
if (!(USBHS->USBHS_DEVEPTISR[ep_idx] & USBHS_DEVEPTISR_RWALL)) {
rc = usb_dc_ep_read_continue(ep);
}
LOG_DBG("ep 0x%x", ep);
return rc;
}
/* Set callback function for the specified endpoint */
int usb_dc_ep_set_callback(uint8_t ep, const usb_dc_ep_callback cb)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (USB_EP_DIR_IS_IN(ep)) {
dev_data.ep_data[ep_idx].cb_in = cb;
} else {
dev_data.ep_data[ep_idx].cb_out = cb;
}
LOG_DBG("ep 0x%x", ep);
return 0;
}
/* Read data from the specified endpoint */
int usb_dc_ep_read_wait(uint8_t ep, uint8_t *data, uint32_t max_data_len,
uint32_t *read_bytes)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
uint32_t data_len = (USBHS->USBHS_DEVEPTISR[ep_idx] &
USBHS_DEVEPTISR_BYCT_Msk) >> USBHS_DEVEPTISR_BYCT_Pos;
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (!usb_dc_ep_is_enabled(ep_idx)) {
LOG_ERR("endpoint not enabled");
return -ENODEV;
}
if (USB_EP_GET_DIR(ep) != USB_EP_DIR_OUT) {
LOG_ERR("wrong endpoint direction");
return -EINVAL;
}
if ((USBHS->USBHS_DEVEPTIMR[ep_idx] & USBHS_DEVEPTIMR_CTRL_STALLRQ)
!= 0) {
LOG_WRN("endpoint is stalled");
return -EBUSY;
}
if (!data && !max_data_len) {
/*
* When both buffer and max data to read are zero return
* the available data in buffer.
*/
if (read_bytes) {
*read_bytes = data_len;
}
return 0;
}
if (data_len > max_data_len) {
LOG_WRN("Not enough space to copy all the data!");
data_len = max_data_len;
}
if (data != NULL) {
for (int i = 0; i < data_len; i++) {
data[i] = usb_dc_ep_fifo_get(ep_idx);
}
}
if (read_bytes) {
*read_bytes = data_len;
}
LOG_DBG("ep 0x%x read %d bytes", ep, data_len);
return 0;
}
/* Continue reading data from the endpoint */
int usb_dc_ep_read_continue(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
if (!usb_dc_ep_is_enabled(ep_idx)) {
LOG_ERR("endpoint not enabled");
return -ENODEV;
}
if (USB_EP_GET_DIR(ep) != USB_EP_DIR_OUT) {
LOG_ERR("wrong endpoint direction");
return -EINVAL;
}
if (ep_idx == 0U) {
/*
* Control endpoint: clear the interrupt flag to send the data.
* It is easier to clear both SETUP and OUT flag than checking
* the stage of the transfer.
*/
USBHS->USBHS_DEVEPTICR[ep_idx] = USBHS_DEVEPTICR_RXOUTIC;
USBHS->USBHS_DEVEPTICR[ep_idx] = USBHS_DEVEPTICR_CTRL_RXSTPIC;
} else {
/*
* Other endpoint types: clear the FIFO control flag to
* receive more data.
*/
USBHS->USBHS_DEVEPTIDR[ep_idx] = USBHS_DEVEPTIDR_FIFOCONC;
}
LOG_DBG("ep 0x%x continue", ep);
return 0;
}
/* Endpoint max packet size (mps) */
int usb_dc_ep_mps(uint8_t ep)
{
uint8_t ep_idx = USB_EP_GET_IDX(ep);
if (ep_idx >= NUM_OF_EP_MAX) {
LOG_ERR("wrong endpoint index/address");
return -EINVAL;
}
return dev_data.ep_data[ep_idx].mps;
}