zephyr/drivers/ethernet/phy/phy_realtek_rtl8211f.c

683 lines
18 KiB
C

/*
* Copyright 2023-2024 NXP
*
* Inspiration from phy_mii.c, which is:
* Copyright (c) 2021 IP-Logix Inc.
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT realtek_rtl8211f
#include <zephyr/kernel.h>
#include <zephyr/net/phy.h>
#include <zephyr/net/mii.h>
#include <zephyr/drivers/mdio.h>
#include <string.h>
#include <zephyr/sys/util_macro.h>
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios) || DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
#include <zephyr/drivers/gpio.h>
#endif
#define LOG_MODULE_NAME phy_rt_rtl8211f
#define LOG_LEVEL CONFIG_PHY_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#define REALTEK_OUI_MSB (0x1CU)
#define PHY_RT_RTL8211F_PHYSR_REG (0x1A)
#define PHY_RT_RTL8211F_PHYSR_LINKSTATUS_MASK BIT(2)
#define PHY_RT_RTL8211F_PHYSR_LINKDUPLEX_MASK BIT(3)
#define PHY_RT_RTL8211F_PHYSR_LINKSPEED_MASK (BIT(4) | BIT(5))
#define PHY_RT_RTL8211F_PHYSR_LINKSPEED_SHIFT (4U)
#define PHY_RT_RTL8211F_PHYSR_LINKSPEED_10M (0U)
#define PHY_RT_RTL8211F_PHYSR_LINKSPEED_100M (1U)
#define PHY_RT_RTL8211F_PHYSR_LINKSPEED_1000M (2U)
#define PHY_RT_RTL8211F_PAGSR_REG (0x1F)
#define PHY_RT_RTL8211F_PAGE_MIICR_ADDR (0xD08)
#define PHY_RT_RTL8211F_MIICR1_REG (0x11)
#define PHY_RT_RTL8211F_MIICR2_REG (0x15)
#define PHY_RT_RTL8211F_MIICR1_TXDLY_MASK BIT(8)
#define PHY_RT_RTL8211F_MIICR2_RXDLY_MASK BIT(3)
#define PHY_RT_RTL8211F_PAGE_INTR_PIN_ADDR (0xD40)
#define PHY_RT_RTL8211F_INTR_PIN_REG (0x16)
#define PHY_RT_RTL8211F_INTR_PIN_MASK BIT(5)
#define PHY_RT_RTL8211F_PAGE_INTR_ADDR (0xA42U)
#define PHY_RT_RTL8211F_INER_REG (0x12U)
#define PHY_RT_RTL8211F_INER_LINKSTATUS_CHANGE_MASK BIT(4)
#define PHY_RT_RTL8211F_INSR_REG (0x1DU)
#define PHY_RT_RTL8211F_RESET_HOLD_TIME_MS 10
struct rt_rtl8211f_config {
uint8_t addr;
const struct device *mdio_dev;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios)
const struct gpio_dt_spec reset_gpio;
#endif
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
const struct gpio_dt_spec interrupt_gpio;
#endif
};
struct rt_rtl8211f_data {
const struct device *dev;
struct phy_link_state state;
phy_callback_t cb;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
struct gpio_callback gpio_callback;
#endif
void *cb_data;
struct k_mutex mutex;
struct k_work_delayable phy_monitor_work;
};
static int phy_rt_rtl8211f_read(const struct device *dev,
uint16_t reg_addr, uint32_t *data)
{
const struct rt_rtl8211f_config *config = dev->config;
int ret;
/* Make sure excessive bits 16-31 are reset */
*data = 0U;
/* Read the PHY register */
ret = mdio_read(config->mdio_dev, config->addr, reg_addr, (uint16_t *)data);
if (ret) {
return ret;
}
return 0;
}
static int phy_rt_rtl8211f_write(const struct device *dev,
uint16_t reg_addr, uint32_t data)
{
const struct rt_rtl8211f_config *config = dev->config;
int ret;
ret = mdio_write(config->mdio_dev, config->addr, reg_addr, (uint16_t)data);
if (ret) {
return ret;
}
return 0;
}
static int phy_rt_rtl8211f_reset(const struct device *dev)
{
const struct rt_rtl8211f_config *config = dev->config;
uint32_t reg_val;
int ret;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios)
if (config->reset_gpio.port) {
/* Start reset */
ret = gpio_pin_set_dt(&config->reset_gpio, 0);
if (ret) {
return ret;
}
/* Hold reset for the minimum time specified by datasheet */
k_busy_wait(USEC_PER_MSEC * PHY_RT_RTL8211F_RESET_HOLD_TIME_MS);
/* Reset over */
ret = gpio_pin_set_dt(&config->reset_gpio, 1);
if (ret) {
return ret;
}
/* Wait another 30 ms (circuits settling time) before accessing registers */
k_busy_wait(USEC_PER_MSEC * 30);
goto finalize_reset;
}
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios) */
/* Reset PHY using register */
ret = phy_rt_rtl8211f_write(dev, MII_BMCR, MII_BMCR_RESET);
if (ret) {
LOG_ERR("Error writing phy (%d) basic control register", config->addr);
return ret;
}
/* Wait for the minimum reset time specified by datasheet */
k_busy_wait(USEC_PER_MSEC * PHY_RT_RTL8211F_RESET_HOLD_TIME_MS);
/* Wait for the reset to be cleared */
do {
ret = phy_rt_rtl8211f_read(dev, MII_BMCR, &reg_val);
if (ret) {
LOG_ERR("Error reading phy (%d) basic control register", config->addr);
return ret;
}
} while (reg_val & MII_BMCR_RESET);
goto finalize_reset;
finalize_reset:
/* Wait until correct data can be read from registers */
do {
ret = phy_rt_rtl8211f_read(dev, MII_PHYID1R, &reg_val);
if (ret) {
LOG_ERR("Error reading phy (%d) identifier register 1", config->addr);
return ret;
}
} while (reg_val != REALTEK_OUI_MSB);
return 0;
}
static int phy_rt_rtl8211f_restart_autonegotiation(const struct device *dev)
{
const struct rt_rtl8211f_config *config = dev->config;
uint32_t bmcr = 0;
int ret;
/* Read control register to write back with autonegotiation bit */
ret = phy_rt_rtl8211f_read(dev, MII_BMCR, &bmcr);
if (ret) {
LOG_ERR("Error reading phy (%d) basic control register", config->addr);
return ret;
}
/* (re)start autonegotiation */
LOG_DBG("PHY (%d) is entering autonegotiation sequence", config->addr);
bmcr |= MII_BMCR_AUTONEG_ENABLE | MII_BMCR_AUTONEG_RESTART;
ret = phy_rt_rtl8211f_write(dev, MII_BMCR, bmcr);
if (ret) {
LOG_ERR("Error writing phy (%d) basic control register", config->addr);
return ret;
}
return 0;
}
static int phy_rt_rtl8211f_get_link(const struct device *dev,
struct phy_link_state *state)
{
const struct rt_rtl8211f_config *config = dev->config;
struct rt_rtl8211f_data *data = dev->data;
int ret;
uint32_t physr = 0;
uint32_t duplex = 0;
struct phy_link_state old_state = data->state;
struct phy_link_state new_state = {};
/* Lock mutex */
ret = k_mutex_lock(&data->mutex, K_FOREVER);
if (ret) {
LOG_ERR("PHY mutex lock error");
return ret;
}
/* Read PHY specific status register */
ret = phy_rt_rtl8211f_read(dev, PHY_RT_RTL8211F_PHYSR_REG, &physr);
if (ret) {
LOG_ERR("Error reading phy (%d) specific status register", config->addr);
(void)k_mutex_unlock(&data->mutex);
return ret;
}
/* Unlock mutex */
(void)k_mutex_unlock(&data->mutex);
new_state.is_up = physr & PHY_RT_RTL8211F_PHYSR_LINKSTATUS_MASK;
if (!new_state.is_up) {
goto result;
}
duplex = (physr & PHY_RT_RTL8211F_PHYSR_LINKDUPLEX_MASK);
switch ((physr & PHY_RT_RTL8211F_PHYSR_LINKSPEED_MASK)
>> PHY_RT_RTL8211F_PHYSR_LINKSPEED_SHIFT) {
case PHY_RT_RTL8211F_PHYSR_LINKSPEED_100M:
if (duplex) {
new_state.speed = LINK_FULL_100BASE_T;
} else {
new_state.speed = LINK_HALF_100BASE_T;
}
break;
case PHY_RT_RTL8211F_PHYSR_LINKSPEED_1000M:
if (duplex) {
new_state.speed = LINK_FULL_1000BASE_T;
} else {
new_state.speed = LINK_HALF_1000BASE_T;
}
break;
case PHY_RT_RTL8211F_PHYSR_LINKSPEED_10M:
default:
if (duplex) {
new_state.speed = LINK_FULL_10BASE_T;
} else {
new_state.speed = LINK_HALF_10BASE_T;
}
break;
}
result:
if (memcmp(&old_state, &new_state, sizeof(struct phy_link_state)) != 0) {
LOG_INF("PHY %d is %s", config->addr, new_state.is_up ? "up" : "down");
if (new_state.is_up) {
LOG_INF("PHY (%d) Link speed %s Mb, %s duplex", config->addr,
(PHY_LINK_IS_SPEED_1000M(new_state.speed) ? "1000" :
(PHY_LINK_IS_SPEED_100M(new_state.speed) ? "100" : "10")),
PHY_LINK_IS_FULL_DUPLEX(new_state.speed) ? "full" : "half");
}
}
memcpy(state, &new_state, sizeof(struct phy_link_state));
return ret;
}
static int phy_rt_rtl8211f_cfg_link(const struct device *dev,
enum phy_link_speed speeds)
{
const struct rt_rtl8211f_config *config = dev->config;
struct rt_rtl8211f_data *data = dev->data;
uint32_t anar;
uint32_t gbcr;
int ret;
/* Lock mutex */
ret = k_mutex_lock(&data->mutex, K_FOREVER);
if (ret) {
LOG_ERR("PHY mutex lock error");
return ret;
}
/* We are going to reconfigure the phy, don't need to monitor until done */
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
if (!config->interrupt_gpio.port) {
k_work_cancel_delayable(&data->phy_monitor_work);
}
#else
k_work_cancel_delayable(&data->phy_monitor_work);
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
/* Read ANAR register to write back */
ret = phy_rt_rtl8211f_read(dev, MII_ANAR, &anar);
if (ret) {
LOG_ERR("Error reading phy (%d) advertising register", config->addr);
goto done;
}
/* Read GBCR register to write back */
ret = phy_rt_rtl8211f_read(dev, MII_1KTCR, &gbcr);
if (ret) {
LOG_ERR("Error reading phy (%d) 1000Base-T control register", config->addr);
goto done;
}
/* Setup advertising register */
if (speeds & LINK_FULL_100BASE_T) {
anar |= MII_ADVERTISE_100_FULL;
} else {
anar &= ~MII_ADVERTISE_100_FULL;
}
if (speeds & LINK_HALF_100BASE_T) {
anar |= MII_ADVERTISE_100_HALF;
} else {
anar &= ~MII_ADVERTISE_100_HALF;
}
if (speeds & LINK_FULL_10BASE_T) {
anar |= MII_ADVERTISE_10_FULL;
} else {
anar &= ~MII_ADVERTISE_10_FULL;
}
if (speeds & LINK_HALF_10BASE_T) {
anar |= MII_ADVERTISE_10_HALF;
} else {
anar &= ~MII_ADVERTISE_10_HALF;
}
/* Setup 1000Base-T control register */
if (speeds & LINK_FULL_1000BASE_T) {
gbcr |= MII_ADVERTISE_1000_FULL;
} else {
gbcr &= ~MII_ADVERTISE_1000_FULL;
}
/* Write capabilities to advertising register */
ret = phy_rt_rtl8211f_write(dev, MII_ANAR, anar);
if (ret) {
LOG_ERR("Error writing phy (%d) advertising register", config->addr);
goto done;
}
/* Write capabilities to 1000Base-T control register */
ret = phy_rt_rtl8211f_write(dev, MII_1KTCR, gbcr);
if (ret) {
LOG_ERR("Error writing phy (%d) 1000Base-T control register", config->addr);
goto done;
}
/* (Re)start autonegotiation */
ret = phy_rt_rtl8211f_restart_autonegotiation(dev);
if (ret) {
LOG_ERR("Error restarting autonegotiation");
goto done;
}
done:
/* Unlock mutex */
(void)k_mutex_unlock(&data->mutex);
/* Start monitoring */
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
if (!config->interrupt_gpio.port) {
k_work_reschedule(&data->phy_monitor_work, K_MSEC(CONFIG_PHY_MONITOR_PERIOD));
}
#else
k_work_reschedule(&data->phy_monitor_work, K_MSEC(CONFIG_PHY_MONITOR_PERIOD));
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
return ret;
}
static int phy_rt_rtl8211f_link_cb_set(const struct device *dev,
phy_callback_t cb, void *user_data)
{
struct rt_rtl8211f_data *data = dev->data;
data->cb = cb;
data->cb_data = user_data;
phy_rt_rtl8211f_get_link(dev, &data->state);
data->cb(dev, &data->state, data->cb_data);
return 0;
}
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
static int phy_rt_rtl8211f_clear_interrupt(struct rt_rtl8211f_data *data)
{
const struct device *dev = data->dev;
const struct rt_rtl8211f_config *config = dev->config;
uint32_t reg_val;
int ret;
/* Lock mutex */
ret = k_mutex_lock(&data->mutex, K_FOREVER);
if (ret) {
LOG_ERR("PHY mutex lock error");
return ret;
}
/* Read/clear PHY interrupt status register */
ret = phy_rt_rtl8211f_read(dev, PHY_RT_RTL8211F_INSR_REG, &reg_val);
if (ret) {
LOG_ERR("Error reading phy (%d) interrupt status register", config->addr);
}
/* Unlock mutex */
(void)k_mutex_unlock(&data->mutex);
return ret;
}
static void phy_rt_rtl8211f_interrupt_handler(const struct device *port,
struct gpio_callback *cb,
gpio_port_pins_t pins)
{
struct rt_rtl8211f_data *data = CONTAINER_OF(cb, struct rt_rtl8211f_data, gpio_callback);
int ret;
ret = k_work_reschedule(&data->phy_monitor_work, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("Failed to schedule phy_monitor_work from ISR");
}
}
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
static void phy_rt_rtl8211f_monitor_work_handler(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct rt_rtl8211f_data *data =
CONTAINER_OF(dwork, struct rt_rtl8211f_data, phy_monitor_work);
const struct device *dev = data->dev;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
const struct rt_rtl8211f_config *config = dev->config;
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
struct phy_link_state state = {};
int ret;
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
if (config->interrupt_gpio.port) {
ret = phy_rt_rtl8211f_clear_interrupt(data);
if (ret) {
return;
}
}
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
ret = phy_rt_rtl8211f_get_link(dev, &state);
if (ret == 0 && memcmp(&state, &data->state, sizeof(struct phy_link_state)) != 0) {
memcpy(&data->state, &state, sizeof(struct phy_link_state));
if (data->cb) {
data->cb(dev, &data->state, data->cb_data);
}
}
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
if (!config->interrupt_gpio.port) {
k_work_reschedule(&data->phy_monitor_work, K_MSEC(CONFIG_PHY_MONITOR_PERIOD));
}
#else
k_work_reschedule(&data->phy_monitor_work, K_MSEC(CONFIG_PHY_MONITOR_PERIOD));
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
}
static int phy_rt_rtl8211f_init(const struct device *dev)
{
const struct rt_rtl8211f_config *config = dev->config;
struct rt_rtl8211f_data *data = dev->data;
uint32_t reg_val;
int ret;
data->dev = dev;
ret = k_mutex_init(&data->mutex);
if (ret) {
return ret;
}
mdio_bus_enable(config->mdio_dev);
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios)
/* Configure reset pin */
if (config->reset_gpio.port) {
ret = gpio_pin_configure_dt(&config->reset_gpio, GPIO_OUTPUT_ACTIVE);
if (ret) {
return ret;
}
}
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios) */
/* Reset PHY */
ret = phy_rt_rtl8211f_reset(dev);
if (ret) {
LOG_ERR("Failed to reset phy (%d)", config->addr);
return ret;
}
/* Set RGMII Tx/Rx Delay. */
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_PAGSR_REG,
PHY_RT_RTL8211F_PAGE_MIICR_ADDR);
if (ret) {
LOG_ERR("Error writing phy (%d) page select register", config->addr);
return ret;
}
ret = phy_rt_rtl8211f_read(dev, PHY_RT_RTL8211F_MIICR1_REG, &reg_val);
if (ret) {
LOG_ERR("Error reading phy (%d) mii control register1", config->addr);
return ret;
}
reg_val |= PHY_RT_RTL8211F_MIICR1_TXDLY_MASK;
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_MIICR1_REG, reg_val);
if (ret) {
LOG_ERR("Error writing phy (%d) mii control register1", config->addr);
return ret;
}
ret = phy_rt_rtl8211f_read(dev, PHY_RT_RTL8211F_MIICR2_REG, &reg_val);
if (ret) {
LOG_ERR("Error reading phy (%d) mii control register2", config->addr);
return ret;
}
reg_val |= PHY_RT_RTL8211F_MIICR2_RXDLY_MASK;
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_MIICR2_REG, reg_val);
if (ret) {
LOG_ERR("Error writing phy (%d) mii control register2", config->addr);
return ret;
}
/* Restore to default page 0 */
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_PAGSR_REG, 0);
if (ret) {
LOG_ERR("Error writing phy (%d) page select register", config->addr);
return ret;
}
k_work_init_delayable(&data->phy_monitor_work, phy_rt_rtl8211f_monitor_work_handler);
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
if (!config->interrupt_gpio.port) {
phy_rt_rtl8211f_monitor_work_handler(&data->phy_monitor_work.work);
goto skip_int_gpio;
}
/* Set INTB/PMEB pin to interrupt mode */
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_PAGSR_REG,
PHY_RT_RTL8211F_PAGE_INTR_PIN_ADDR);
if (ret) {
LOG_ERR("Error writing phy (%d) page select register", config->addr);
return ret;
}
ret = phy_rt_rtl8211f_read(dev, PHY_RT_RTL8211F_INTR_PIN_REG, &reg_val);
if (!ret) {
reg_val &= ~PHY_RT_RTL8211F_INTR_PIN_MASK;
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_INTR_PIN_REG, reg_val);
if (ret) {
LOG_ERR("Error writing phy (%d) interrupt pin setting register",
config->addr);
return ret;
}
} else {
LOG_ERR("Error reading phy (%d) interrupt pin setting register", config->addr);
return ret;
}
/* Restore to default page 0 */
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_PAGSR_REG, 0);
if (ret) {
LOG_ERR("Error writing phy (%d) page select register", config->addr);
return ret;
}
/* Clear interrupt */
ret = phy_rt_rtl8211f_clear_interrupt(data);
if (ret) {
return ret;
}
/* Configure interrupt pin */
ret = gpio_pin_configure_dt(&config->interrupt_gpio, GPIO_INPUT);
if (ret) {
return ret;
}
gpio_init_callback(&data->gpio_callback, phy_rt_rtl8211f_interrupt_handler,
BIT(config->interrupt_gpio.pin));
ret = gpio_add_callback_dt(&config->interrupt_gpio, &data->gpio_callback);
if (ret) {
return ret;
}
ret = gpio_pin_interrupt_configure_dt(&config->interrupt_gpio, GPIO_INT_EDGE_TO_ACTIVE);
if (ret) {
return ret;
}
/* Enable PHY interrupt. */
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_PAGSR_REG,
PHY_RT_RTL8211F_PAGE_INTR_ADDR);
if (ret) {
LOG_ERR("Error writing phy (%d) page select register", config->addr);
return ret;
}
ret = phy_rt_rtl8211f_read(dev, PHY_RT_RTL8211F_INER_REG, &reg_val);
if (ret) {
LOG_ERR("Error reading phy (%d) interrupt enable register", config->addr);
return ret;
}
reg_val |= PHY_RT_RTL8211F_INER_LINKSTATUS_CHANGE_MASK;
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_INER_REG, reg_val);
if (ret) {
LOG_ERR("Error writing phy (%d) interrupt enable register", config->addr);
return ret;
}
/* Restore to default page 0 */
ret = phy_rt_rtl8211f_write(dev, PHY_RT_RTL8211F_PAGSR_REG, 0);
if (ret) {
LOG_ERR("Error writing phy (%d) page select register", config->addr);
return ret;
}
skip_int_gpio:
#else
phy_rt_rtl8211f_monitor_work_handler(&data->phy_monitor_work.work);
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
return 0;
}
static const struct ethphy_driver_api rt_rtl8211f_phy_api = {
.get_link = phy_rt_rtl8211f_get_link,
.cfg_link = phy_rt_rtl8211f_cfg_link,
.link_cb_set = phy_rt_rtl8211f_link_cb_set,
.read = phy_rt_rtl8211f_read,
.write = phy_rt_rtl8211f_write,
};
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios)
#define RESET_GPIO(n) \
.reset_gpio = GPIO_DT_SPEC_INST_GET_OR(n, reset_gpios, {0}),
#else
#define RESET_GPIO(n)
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(reset_gpios) */
#if DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios)
#define INTERRUPT_GPIO(n) \
.interrupt_gpio = GPIO_DT_SPEC_INST_GET_OR(n, int_gpios, {0}),
#else
#define INTERRUPT_GPIO(n)
#endif /* DT_ANY_INST_HAS_PROP_STATUS_OKAY(int_gpios) */
#define REALTEK_RTL8211F_INIT(n) \
static const struct rt_rtl8211f_config rt_rtl8211f_##n##_config = { \
.addr = DT_INST_REG_ADDR(n), \
.mdio_dev = DEVICE_DT_GET(DT_INST_PARENT(n)), \
RESET_GPIO(n) \
INTERRUPT_GPIO(n) \
}; \
\
static struct rt_rtl8211f_data rt_rtl8211f_##n##_data; \
\
DEVICE_DT_INST_DEFINE(n, &phy_rt_rtl8211f_init, NULL, \
&rt_rtl8211f_##n##_data, &rt_rtl8211f_##n##_config, \
POST_KERNEL, CONFIG_PHY_INIT_PRIORITY, \
&rt_rtl8211f_phy_api);
DT_INST_FOREACH_STATUS_OKAY(REALTEK_RTL8211F_INIT)