zephyr/drivers/counter/counter_ll_stm32_timer.c

680 lines
18 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2021 Kent Hall.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_counter
#include <zephyr/drivers/counter.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/irq.h>
#include <zephyr/sys/atomic.h>
#include <stm32_ll_tim.h>
#include <stm32_ll_rcc.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(counter_timer_stm32, CONFIG_COUNTER_LOG_LEVEL);
/* L0 series MCUs only have 16-bit timers and don't have below macro defined */
#ifndef IS_TIM_32B_COUNTER_INSTANCE
#define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) (0)
#endif
/** Maximum number of timer channels. */
#define TIMER_MAX_CH 4U
/** Number of channels for timer by index. */
#define NUM_CH(timx) \
(IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_4) ? 4U : \
(IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_3) ? 3U : \
(IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_2) ? 2U : \
(IS_TIM_CCX_INSTANCE(timx, TIM_CHANNEL_1) ? 1U : \
0))))
/** Channel to compare set function mapping. */
static void(*const set_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *,
uint32_t) = {
LL_TIM_OC_SetCompareCH1, LL_TIM_OC_SetCompareCH2,
LL_TIM_OC_SetCompareCH3, LL_TIM_OC_SetCompareCH4,
};
/** Channel to compare get function mapping. */
#if !defined(CONFIG_SOC_SERIES_STM32MP1X)
static uint32_t(*const get_timer_compare[TIMER_MAX_CH])(const TIM_TypeDef *) = {
LL_TIM_OC_GetCompareCH1, LL_TIM_OC_GetCompareCH2,
LL_TIM_OC_GetCompareCH3, LL_TIM_OC_GetCompareCH4,
};
#else
static uint32_t(*const get_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *) = {
LL_TIM_OC_GetCompareCH1, LL_TIM_OC_GetCompareCH2,
LL_TIM_OC_GetCompareCH3, LL_TIM_OC_GetCompareCH4,
};
#endif
/** Channel to interrupt enable function mapping. */
static void(*const enable_it[TIMER_MAX_CH])(TIM_TypeDef *) = {
LL_TIM_EnableIT_CC1, LL_TIM_EnableIT_CC2,
LL_TIM_EnableIT_CC3, LL_TIM_EnableIT_CC4,
};
/** Channel to interrupt enable function mapping. */
static void(*const disable_it[TIMER_MAX_CH])(TIM_TypeDef *) = {
LL_TIM_DisableIT_CC1, LL_TIM_DisableIT_CC2,
LL_TIM_DisableIT_CC3, LL_TIM_DisableIT_CC4,
};
#ifdef CONFIG_ASSERT
/** Channel to interrupt enable check function mapping. */
#if !defined(CONFIG_SOC_SERIES_STM32MP1X)
static uint32_t(*const check_it_enabled[TIMER_MAX_CH])(const TIM_TypeDef *) = {
LL_TIM_IsEnabledIT_CC1, LL_TIM_IsEnabledIT_CC2,
LL_TIM_IsEnabledIT_CC3, LL_TIM_IsEnabledIT_CC4,
};
#else
static uint32_t(*const check_it_enabled[TIMER_MAX_CH])(TIM_TypeDef *) = {
LL_TIM_IsEnabledIT_CC1, LL_TIM_IsEnabledIT_CC2,
LL_TIM_IsEnabledIT_CC3, LL_TIM_IsEnabledIT_CC4,
};
#endif
#endif
/** Channel to interrupt flag clear function mapping. */
static void(*const clear_it_flag[TIMER_MAX_CH])(TIM_TypeDef *) = {
LL_TIM_ClearFlag_CC1, LL_TIM_ClearFlag_CC2,
LL_TIM_ClearFlag_CC3, LL_TIM_ClearFlag_CC4,
};
struct counter_stm32_data {
counter_top_callback_t top_cb;
void *top_user_data;
uint32_t guard_period;
atomic_t cc_int_pending;
uint32_t freq;
};
struct counter_stm32_ch_data {
counter_alarm_callback_t callback;
void *user_data;
};
struct counter_stm32_config {
struct counter_config_info info;
struct counter_stm32_ch_data *ch_data;
TIM_TypeDef *timer;
uint32_t prescaler;
struct stm32_pclken pclken;
void (*irq_config_func)(const struct device *dev);
uint32_t irqn;
/* Reset controller device configuration */
const struct reset_dt_spec reset;
LOG_INSTANCE_PTR_DECLARE(log);
};
static int counter_stm32_start(const struct device *dev)
{
const struct counter_stm32_config *config = dev->config;
TIM_TypeDef *timer = config->timer;
/* enable counter */
LL_TIM_EnableCounter(timer);
return 0;
}
static int counter_stm32_stop(const struct device *dev)
{
const struct counter_stm32_config *config = dev->config;
TIM_TypeDef *timer = config->timer;
/* disable counter */
LL_TIM_DisableCounter(timer);
return 0;
}
static uint32_t counter_stm32_get_top_value(const struct device *dev)
{
const struct counter_stm32_config *config = dev->config;
return LL_TIM_GetAutoReload(config->timer);
}
static uint32_t counter_stm32_read(const struct device *dev)
{
const struct counter_stm32_config *config = dev->config;
return LL_TIM_GetCounter(config->timer);
}
static int counter_stm32_get_value(const struct device *dev, uint32_t *ticks)
{
*ticks = counter_stm32_read(dev);
return 0;
}
static uint32_t counter_stm32_ticks_add(uint32_t val1, uint32_t val2, uint32_t top)
{
uint32_t to_top;
if (likely(IS_BIT_MASK(top))) {
return (val1 + val2) & top;
}
to_top = top - val1;
return (val2 <= to_top) ? val1 + val2 : val2 - to_top - 1U;
}
static uint32_t counter_stm32_ticks_sub(uint32_t val, uint32_t old, uint32_t top)
{
if (likely(IS_BIT_MASK(top))) {
return (val - old) & top;
}
/* if top is not 2^n-1 */
return (val >= old) ? (val - old) : val + top + 1U - old;
}
static void counter_stm32_counter_stm32_set_cc_int_pending(const struct device *dev, uint8_t chan)
{
const struct counter_stm32_config *config = dev->config;
struct counter_stm32_data *data = dev->data;
atomic_or(&data->cc_int_pending, BIT(chan));
NVIC_SetPendingIRQ(config->irqn);
}
static int counter_stm32_set_cc(const struct device *dev, uint8_t id,
const struct counter_alarm_cfg *alarm_cfg)
{
const struct counter_stm32_config *config = dev->config;
struct counter_stm32_data *data = dev->data;
__ASSERT_NO_MSG(data->guard_period < counter_stm32_get_top_value(dev));
uint32_t val = alarm_cfg->ticks;
uint32_t flags = alarm_cfg->flags;
bool absolute = flags & COUNTER_ALARM_CFG_ABSOLUTE;
bool irq_on_late;
TIM_TypeDef *timer = config->timer;
uint32_t top = counter_stm32_get_top_value(dev);
int err = 0;
uint32_t prev_val;
uint32_t now;
uint32_t diff;
uint32_t max_rel_val;
__ASSERT(!check_it_enabled[id](timer),
"Expected that CC interrupt is disabled.");
/* First take care of a risk of an event coming from CC being set to
* next tick. Reconfigure CC to future (now tick is the furthest
* future).
*/
now = counter_stm32_read(dev);
prev_val = get_timer_compare[id](timer);
set_timer_compare[id](timer, now);
clear_it_flag[id](timer);
if (absolute) {
max_rel_val = top - data->guard_period;
irq_on_late = flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE;
} else {
/* If relative value is smaller than half of the counter range
* it is assumed that there is a risk of setting value too late
* and late detection algorithm must be applied. When late
* setting is detected, interrupt shall be triggered for
* immediate expiration of the timer. Detection is performed
* by limiting relative distance between CC and counter.
*
* Note that half of counter range is an arbitrary value.
*/
irq_on_late = val < (top / 2U);
/* limit max to detect short relative being set too late. */
max_rel_val = irq_on_late ? top / 2U : top;
val = counter_stm32_ticks_add(now, val, top);
}
set_timer_compare[id](timer, val);
/* decrement value to detect also case when val == counter_stm32_read(dev). Otherwise,
* condition would need to include comparing diff against 0.
*/
diff = counter_stm32_ticks_sub(val - 1U, counter_stm32_read(dev), top);
if (diff > max_rel_val) {
if (absolute) {
err = -ETIME;
}
/* Interrupt is triggered always for relative alarm and
* for absolute depending on the flag.
*/
if (irq_on_late) {
counter_stm32_counter_stm32_set_cc_int_pending(dev, id);
} else {
config->ch_data[id].callback = NULL;
}
} else {
enable_it[id](timer);
}
return err;
}
static int counter_stm32_set_alarm(const struct device *dev, uint8_t chan,
const struct counter_alarm_cfg *alarm_cfg)
{
const struct counter_stm32_config *config = dev->config;
struct counter_stm32_ch_data *chdata = &config->ch_data[chan];
if (alarm_cfg->ticks > counter_stm32_get_top_value(dev)) {
return -EINVAL;
}
if (chdata->callback) {
return -EBUSY;
}
chdata->callback = alarm_cfg->callback;
chdata->user_data = alarm_cfg->user_data;
return counter_stm32_set_cc(dev, chan, alarm_cfg);
}
static int counter_stm32_cancel_alarm(const struct device *dev, uint8_t chan)
{
const struct counter_stm32_config *config = dev->config;
disable_it[chan](config->timer);
config->ch_data[chan].callback = NULL;
return 0;
}
static int counter_stm32_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
const struct counter_stm32_config *config = dev->config;
TIM_TypeDef *timer = config->timer;
struct counter_stm32_data *data = dev->data;
int err = 0;
for (int i = 0; i < counter_get_num_of_channels(dev); i++) {
/* Overflow can be changed only when all alarms are
* disabled.
*/
if (config->ch_data[i].callback) {
return -EBUSY;
}
}
LL_TIM_DisableIT_UPDATE(timer);
LL_TIM_SetAutoReload(timer, cfg->ticks);
LL_TIM_ClearFlag_UPDATE(timer);
data->top_cb = cfg->callback;
data->top_user_data = cfg->user_data;
if (!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) {
LL_TIM_SetCounter(timer, 0);
} else if (counter_stm32_read(dev) >= cfg->ticks) {
err = -ETIME;
if (cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) {
LL_TIM_SetCounter(timer, 0);
}
}
if (cfg->callback) {
LL_TIM_EnableIT_UPDATE(timer);
}
return err;
}
static uint32_t counter_stm32_get_pending_int(const struct device *dev)
{
const struct counter_stm32_config *cfg = dev->config;
uint32_t pending = 0;
switch (counter_get_num_of_channels(dev)) {
case 4U:
pending |= LL_TIM_IsActiveFlag_CC4(cfg->timer);
__fallthrough;
case 3U:
pending |= LL_TIM_IsActiveFlag_CC3(cfg->timer);
__fallthrough;
case 2U:
pending |= LL_TIM_IsActiveFlag_CC2(cfg->timer);
__fallthrough;
case 1U:
pending |= LL_TIM_IsActiveFlag_CC1(cfg->timer);
}
return !!pending;
}
/**
* Obtain timer clock speed.
*
* @param pclken Timer clock control subsystem.
* @param tim_clk Where computed timer clock will be stored.
*
* @return 0 on success, error code otherwise.
*
* This function is ripped from the PWM driver; TODO handle code duplication.
*/
static int counter_stm32_get_tim_clk(const struct stm32_pclken *pclken, uint32_t *tim_clk)
{
int r;
const struct device *clk;
uint32_t bus_clk, apb_psc;
clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
if (!device_is_ready(clk)) {
return -ENODEV;
}
r = clock_control_get_rate(clk, (clock_control_subsys_t)pclken,
&bus_clk);
if (r < 0) {
return r;
}
#if defined(CONFIG_SOC_SERIES_STM32H7X)
if (pclken->bus == STM32_CLOCK_BUS_APB1) {
apb_psc = STM32_D2PPRE1;
} else {
apb_psc = STM32_D2PPRE2;
}
#else
if (pclken->bus == STM32_CLOCK_BUS_APB1) {
#if defined(CONFIG_SOC_SERIES_STM32MP1X)
apb_psc = (uint32_t)(READ_BIT(RCC->APB1DIVR, RCC_APB1DIVR_APB1DIV));
#else
apb_psc = STM32_APB1_PRESCALER;
#endif /* CONFIG_SOC_SERIES_STM32MP1X */
}
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32f0_rcc)
else {
#if defined(CONFIG_SOC_SERIES_STM32MP1X)
apb_psc = (uint32_t)(READ_BIT(RCC->APB2DIVR, RCC_APB2DIVR_APB2DIV));
#else
apb_psc = STM32_APB2_PRESCALER;
#endif /* CONFIG_SOC_SERIES_STM32MP1X */
}
#endif /* ! st_stm32f0_rcc */
#endif /* CONFIG_SOC_SERIES_STM32H7X */
#if defined(RCC_DCKCFGR_TIMPRE) || defined(RCC_DCKCFGR1_TIMPRE) || \
defined(RCC_CFGR_TIMPRE)
/*
* There are certain series (some F4, F7 and H7) that have the TIMPRE
* bit to control the clock frequency of all the timers connected to
* APB1 and APB2 domains.
*
* Up to a certain threshold value of APB{1,2} prescaler, timer clock
* equals to HCLK. This threshold value depends on TIMPRE setting
* (2 if TIMPRE=0, 4 if TIMPRE=1). Above threshold, timer clock is set
* to a multiple of the APB domain clock PCLK{1,2} (2 if TIMPRE=0, 4 if
* TIMPRE=1).
*/
if (LL_RCC_GetTIMPrescaler() == LL_RCC_TIM_PRESCALER_TWICE) {
/* TIMPRE = 0 */
if (apb_psc <= 2u) {
LL_RCC_ClocksTypeDef clocks;
LL_RCC_GetSystemClocksFreq(&clocks);
*tim_clk = clocks.HCLK_Frequency;
} else {
*tim_clk = bus_clk * 2u;
}
} else {
/* TIMPRE = 1 */
if (apb_psc <= 4u) {
LL_RCC_ClocksTypeDef clocks;
LL_RCC_GetSystemClocksFreq(&clocks);
*tim_clk = clocks.HCLK_Frequency;
} else {
*tim_clk = bus_clk * 4u;
}
}
#else
/*
* If the APB prescaler equals 1, the timer clock frequencies
* are set to the same frequency as that of the APB domain.
* Otherwise, they are set to twice (×2) the frequency of the
* APB domain.
*/
if (apb_psc == 1u) {
*tim_clk = bus_clk;
} else {
*tim_clk = bus_clk * 2u;
}
#endif
return 0;
}
static int counter_stm32_init_timer(const struct device *dev)
{
const struct counter_stm32_config *cfg = dev->config;
struct counter_stm32_data *data = dev->data;
TIM_TypeDef *timer = cfg->timer;
LL_TIM_InitTypeDef init;
uint32_t tim_clk;
int r;
/* initialize clock and check its speed */
r = clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t)&cfg->pclken);
if (r < 0) {
LOG_ERR("Could not initialize clock (%d)", r);
return r;
}
r = counter_stm32_get_tim_clk(&cfg->pclken, &tim_clk);
if (r < 0) {
LOG_ERR("Could not obtain timer clock (%d)", r);
return r;
}
data->freq = tim_clk / (cfg->prescaler + 1U);
if (!device_is_ready(cfg->reset.dev)) {
LOG_ERR("reset controller not ready");
return -ENODEV;
}
/* Reset timer to default state using RCC */
(void)reset_line_toggle_dt(&cfg->reset);
/* config/enable IRQ */
cfg->irq_config_func(dev);
/* initialize timer */
LL_TIM_StructInit(&init);
init.Prescaler = cfg->prescaler;
init.CounterMode = LL_TIM_COUNTERMODE_UP;
init.Autoreload = counter_get_max_top_value(dev);
init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
if (LL_TIM_Init(timer, &init) != SUCCESS) {
LOG_ERR("Could not initialize timer");
return -EIO;
}
return 0;
}
static uint32_t counter_stm32_get_guard_period(const struct device *dev, uint32_t flags)
{
struct counter_stm32_data *data = dev->data;
ARG_UNUSED(flags);
return data->guard_period;
}
static int counter_stm32_set_guard_period(const struct device *dev, uint32_t guard,
uint32_t flags)
{
struct counter_stm32_data *data = dev->data;
ARG_UNUSED(flags);
__ASSERT_NO_MSG(guard < counter_stm32_get_top_value(dev));
data->guard_period = guard;
return 0;
}
static uint32_t counter_stm32_get_freq(const struct device *dev)
{
struct counter_stm32_data *data = dev->data;
return data->freq;
}
static void counter_stm32_top_irq_handle(const struct device *dev)
{
struct counter_stm32_data *data = dev->data;
counter_top_callback_t cb = data->top_cb;
__ASSERT(cb != NULL, "top event enabled - expecting callback");
cb(dev, data->top_user_data);
}
static void counter_stm32_alarm_irq_handle(const struct device *dev, uint32_t id)
{
const struct counter_stm32_config *config = dev->config;
struct counter_stm32_data *data = dev->data;
TIM_TypeDef *timer = config->timer;
struct counter_stm32_ch_data *chdata;
counter_alarm_callback_t cb;
atomic_and(&data->cc_int_pending, ~BIT(id));
disable_it[id](timer);
chdata = &config->ch_data[id];
cb = chdata->callback;
chdata->callback = NULL;
if (cb) {
uint32_t cc_val = get_timer_compare[id](timer);
cb(dev, id, cc_val, chdata->user_data);
}
}
static const struct counter_driver_api counter_stm32_driver_api = {
.start = counter_stm32_start,
.stop = counter_stm32_stop,
.get_value = counter_stm32_get_value,
.set_alarm = counter_stm32_set_alarm,
.cancel_alarm = counter_stm32_cancel_alarm,
.set_top_value = counter_stm32_set_top_value,
.get_pending_int = counter_stm32_get_pending_int,
.get_top_value = counter_stm32_get_top_value,
.get_guard_period = counter_stm32_get_guard_period,
.set_guard_period = counter_stm32_set_guard_period,
.get_freq = counter_stm32_get_freq,
};
#define TIM_IRQ_HANDLE_CC(timx, cc) \
do { \
bool hw_irq = LL_TIM_IsActiveFlag_CC##cc(timer) && \
LL_TIM_IsEnabledIT_CC##cc(timer); \
if (hw_irq || (data->cc_int_pending & BIT(cc - 1U))) { \
if (hw_irq) { \
LL_TIM_ClearFlag_CC##cc(timer); \
} \
counter_stm32_alarm_irq_handle(dev, cc - 1U); \
} \
} while (0)
void counter_stm32_irq_handler(const struct device *dev)
{
const struct counter_stm32_config *config = dev->config;
struct counter_stm32_data *data = dev->data;
TIM_TypeDef *timer = config->timer;
/* Capture compare events */
switch (counter_get_num_of_channels(dev)) {
case 4U:
TIM_IRQ_HANDLE_CC(timer, 4);
__fallthrough;
case 3U:
TIM_IRQ_HANDLE_CC(timer, 3);
__fallthrough;
case 2U:
TIM_IRQ_HANDLE_CC(timer, 2);
__fallthrough;
case 1U:
TIM_IRQ_HANDLE_CC(timer, 1);
}
/* TIM Update event */
if (LL_TIM_IsActiveFlag_UPDATE(timer) && LL_TIM_IsEnabledIT_UPDATE(timer)) {
LL_TIM_ClearFlag_UPDATE(timer);
counter_stm32_top_irq_handle(dev);
}
}
#define TIMER(idx) DT_INST_PARENT(idx)
/** TIMx instance from DT */
#define TIM(idx) ((TIM_TypeDef *)DT_REG_ADDR(TIMER(idx)))
#define COUNTER_DEVICE_INIT(idx) \
BUILD_ASSERT(DT_PROP(TIMER(idx), st_prescaler) <= 0xFFFF, \
"TIMER prescaler out of range"); \
BUILD_ASSERT(NUM_CH(TIM(idx)) <= TIMER_MAX_CH, \
"TIMER too many channels"); \
\
static struct counter_stm32_data counter##idx##_data; \
static struct counter_stm32_ch_data counter##idx##_ch_data[TIMER_MAX_CH]; \
\
static void counter_##idx##_stm32_irq_config(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(TIMER(idx)), \
DT_IRQ(TIMER(idx), priority), \
counter_stm32_irq_handler, \
DEVICE_DT_INST_GET(idx), \
0); \
irq_enable(DT_IRQN(TIMER(idx))); \
} \
\
static const struct counter_stm32_config counter##idx##_config = { \
.info = { \
.max_top_value = \
IS_TIM_32B_COUNTER_INSTANCE(TIM(idx)) ? \
0xFFFFFFFF : 0x0000FFFF, \
.flags = COUNTER_CONFIG_INFO_COUNT_UP, \
.channels = NUM_CH(TIM(idx)), \
}, \
.ch_data = counter##idx##_ch_data, \
.timer = TIM(idx), \
.prescaler = DT_PROP(TIMER(idx), st_prescaler), \
.pclken = { \
.bus = DT_CLOCKS_CELL(TIMER(idx), bus), \
.enr = DT_CLOCKS_CELL(TIMER(idx), bits) \
}, \
.irq_config_func = counter_##idx##_stm32_irq_config, \
.irqn = DT_IRQN(TIMER(idx)), \
.reset = RESET_DT_SPEC_GET(TIMER(idx)), \
}; \
\
DEVICE_DT_INST_DEFINE(idx, \
counter_stm32_init_timer, \
NULL, \
&counter##idx##_data, \
&counter##idx##_config, \
PRE_KERNEL_1, CONFIG_COUNTER_INIT_PRIORITY, \
&counter_stm32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(COUNTER_DEVICE_INIT)