/* * Copyright (c) 2021 BrainCo Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT gd_gd32_spi #include #include #include #include #include #include #include #ifdef CONFIG_SPI_GD32_DMA #include #include #endif #include #include #include LOG_MODULE_REGISTER(spi_gd32); #include "spi_context.h" /* SPI error status mask. */ #define SPI_GD32_ERR_MASK (SPI_STAT_RXORERR | SPI_STAT_CONFERR | SPI_STAT_CRCERR) #define GD32_SPI_PSC_MAX 0x7U #ifdef CONFIG_SPI_GD32_DMA enum spi_gd32_dma_direction { RX = 0, TX, NUM_OF_DIRECTION }; struct spi_gd32_dma_config { const struct device *dev; uint32_t channel; uint32_t config; uint32_t slot; uint32_t fifo_threshold; }; struct spi_gd32_dma_data { struct dma_config config; struct dma_block_config block; uint32_t count; }; #endif struct spi_gd32_config { uint32_t reg; uint16_t clkid; struct reset_dt_spec reset; const struct pinctrl_dev_config *pcfg; #ifdef CONFIG_SPI_GD32_DMA const struct spi_gd32_dma_config dma[NUM_OF_DIRECTION]; #endif #ifdef CONFIG_SPI_GD32_INTERRUPT void (*irq_configure)(); #endif }; struct spi_gd32_data { struct spi_context ctx; #ifdef CONFIG_SPI_GD32_DMA struct spi_gd32_dma_data dma[NUM_OF_DIRECTION]; #endif }; #ifdef CONFIG_SPI_GD32_DMA static uint32_t dummy_tx; static uint32_t dummy_rx; static bool spi_gd32_dma_enabled(const struct device *dev) { const struct spi_gd32_config *cfg = dev->config; if (cfg->dma[TX].dev && cfg->dma[RX].dev) { return true; } return false; } static size_t spi_gd32_dma_enabled_num(const struct device *dev) { return spi_gd32_dma_enabled(dev) ? 2 : 0; } #endif static int spi_gd32_get_err(const struct spi_gd32_config *cfg) { uint32_t stat = SPI_STAT(cfg->reg); if (stat & SPI_GD32_ERR_MASK) { LOG_ERR("spi%u error status detected, err = %u", cfg->reg, stat & (uint32_t)SPI_GD32_ERR_MASK); return -EIO; } return 0; } static bool spi_gd32_transfer_ongoing(struct spi_gd32_data *data) { return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); } static int spi_gd32_configure(const struct device *dev, const struct spi_config *config) { struct spi_gd32_data *data = dev->data; const struct spi_gd32_config *cfg = dev->config; uint32_t bus_freq; if (spi_context_configured(&data->ctx, config)) { return 0; } if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_SLAVE) { LOG_ERR("Slave mode not supported"); return -ENOTSUP; } SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SPIEN; SPI_CTL0(cfg->reg) |= SPI_MASTER; SPI_CTL0(cfg->reg) &= ~SPI_TRANSMODE_BDTRANSMIT; if (SPI_WORD_SIZE_GET(config->operation) == 8) { SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_8BIT; } else { SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_16BIT; } /* Reset to hardware NSS mode. */ SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SWNSSEN; if (spi_cs_is_gpio(config)) { SPI_CTL0(cfg->reg) |= SPI_CTL0_SWNSSEN; } else { /* * For single master env, * hardware NSS mode also need to set the NSSDRV bit. */ SPI_CTL1(cfg->reg) |= SPI_CTL1_NSSDRV; } SPI_CTL0(cfg->reg) &= ~SPI_CTL0_LF; if (config->operation & SPI_TRANSFER_LSB) { SPI_CTL0(cfg->reg) |= SPI_CTL0_LF; } SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPL; if (config->operation & SPI_MODE_CPOL) { SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPL; } SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPH; if (config->operation & SPI_MODE_CPHA) { SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPH; } (void)clock_control_get_rate(GD32_CLOCK_CONTROLLER, (clock_control_subsys_t)&cfg->clkid, &bus_freq); for (uint8_t i = 0U; i <= GD32_SPI_PSC_MAX; i++) { bus_freq = bus_freq >> 1U; if (bus_freq <= config->frequency) { SPI_CTL0(cfg->reg) &= ~SPI_CTL0_PSC; SPI_CTL0(cfg->reg) |= CTL0_PSC(i); break; } } data->ctx.config = config; return 0; } static int spi_gd32_frame_exchange(const struct device *dev) { struct spi_gd32_data *data = dev->data; const struct spi_gd32_config *cfg = dev->config; struct spi_context *ctx = &data->ctx; uint16_t tx_frame = 0U, rx_frame = 0U; while ((SPI_STAT(cfg->reg) & SPI_STAT_TBE) == 0) { /* NOP */ } if (SPI_WORD_SIZE_GET(ctx->config->operation) == 8) { if (spi_context_tx_buf_on(ctx)) { tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); } /* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */ SPI_DATA(cfg->reg) = tx_frame; spi_context_update_tx(ctx, 1, 1); } else { if (spi_context_tx_buf_on(ctx)) { tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); } SPI_DATA(cfg->reg) = tx_frame; spi_context_update_tx(ctx, 2, 1); } while ((SPI_STAT(cfg->reg) & SPI_STAT_RBNE) == 0) { /* NOP */ } if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { /* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */ rx_frame = SPI_DATA(cfg->reg); if (spi_context_rx_buf_on(ctx)) { UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf); } spi_context_update_rx(ctx, 1, 1); } else { rx_frame = SPI_DATA(cfg->reg); if (spi_context_rx_buf_on(ctx)) { UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf); } spi_context_update_rx(ctx, 2, 1); } return spi_gd32_get_err(cfg); } #ifdef CONFIG_SPI_GD32_DMA static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status); static uint32_t spi_gd32_dma_setup(const struct device *dev, const uint32_t dir) { const struct spi_gd32_config *cfg = dev->config; struct spi_gd32_data *data = dev->data; struct dma_config *dma_cfg = &data->dma[dir].config; struct dma_block_config *block_cfg = &data->dma[dir].block; const struct spi_gd32_dma_config *dma = &cfg->dma[dir]; int ret; memset(dma_cfg, 0, sizeof(struct dma_config)); memset(block_cfg, 0, sizeof(struct dma_block_config)); dma_cfg->source_burst_length = 1; dma_cfg->dest_burst_length = 1; dma_cfg->user_data = (void *)dev; dma_cfg->dma_callback = spi_gd32_dma_callback; dma_cfg->block_count = 1U; dma_cfg->head_block = block_cfg; dma_cfg->dma_slot = cfg->dma[dir].slot; dma_cfg->channel_priority = GD32_DMA_CONFIG_PRIORITY(cfg->dma[dir].config); dma_cfg->channel_direction = dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY; if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { dma_cfg->source_data_size = 1; dma_cfg->dest_data_size = 1; } else { dma_cfg->source_data_size = 2; dma_cfg->dest_data_size = 2; } block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx); if (dir == TX) { block_cfg->dest_address = (uint32_t)&SPI_DATA(cfg->reg); block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; if (spi_context_tx_buf_on(&data->ctx)) { block_cfg->source_address = (uint32_t)data->ctx.tx_buf; block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { block_cfg->source_address = (uint32_t)&dummy_tx; block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } if (dir == RX) { block_cfg->source_address = (uint32_t)&SPI_DATA(cfg->reg); block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; if (spi_context_rx_buf_on(&data->ctx)) { block_cfg->dest_address = (uint32_t)data->ctx.rx_buf; block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { block_cfg->dest_address = (uint32_t)&dummy_rx; block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } ret = dma_config(dma->dev, dma->channel, dma_cfg); if (ret < 0) { LOG_ERR("dma_config %p failed %d\n", dma->dev, ret); return ret; } ret = dma_start(dma->dev, dma->channel); if (ret < 0) { LOG_ERR("dma_start %p failed %d\n", dma->dev, ret); return ret; } return 0; } static int spi_gd32_start_dma_transceive(const struct device *dev) { const struct spi_gd32_config *cfg = dev->config; struct spi_gd32_data *data = dev->data; const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx); struct dma_status stat; int ret = 0; for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) { dma_get_status(cfg->dma[i].dev, cfg->dma[i].channel, &stat); if ((chunk_len != data->dma[i].count) && !stat.busy) { ret = spi_gd32_dma_setup(dev, i); if (ret < 0) { goto on_error; } } } SPI_CTL1(cfg->reg) |= (SPI_CTL1_DMATEN | SPI_CTL1_DMAREN); on_error: if (ret < 0) { for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) { dma_stop(cfg->dma[i].dev, cfg->dma[i].channel); } } return ret; } #endif static int spi_gd32_transceive_impl(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { struct spi_gd32_data *data = dev->data; const struct spi_gd32_config *cfg = dev->config; int ret; spi_context_lock(&data->ctx, (cb != NULL), cb, userdata, config); ret = spi_gd32_configure(dev, config); if (ret < 0) { goto error; } SPI_CTL0(cfg->reg) |= SPI_CTL0_SPIEN; spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(&data->ctx, true); #ifdef CONFIG_SPI_GD32_INTERRUPT #ifdef CONFIG_SPI_GD32_DMA if (spi_gd32_dma_enabled(dev)) { for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) { data->dma[i].count = 0; } ret = spi_gd32_start_dma_transceive(dev); if (ret < 0) { goto dma_error; } } else #endif { SPI_STAT(cfg->reg) &= ~(SPI_STAT_RBNE | SPI_STAT_TBE | SPI_GD32_ERR_MASK); SPI_CTL1(cfg->reg) |= (SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE); } ret = spi_context_wait_for_completion(&data->ctx); #else do { ret = spi_gd32_frame_exchange(dev); if (ret < 0) { break; } } while (spi_gd32_transfer_ongoing(data)); #ifdef CONFIG_SPI_ASYNC spi_context_complete(&data->ctx, dev, ret); #endif #endif while (!(SPI_STAT(cfg->reg) & SPI_STAT_TBE) || (SPI_STAT(cfg->reg) & SPI_STAT_TRANS)) { /* Wait until last frame transfer complete. */ } #ifdef CONFIG_SPI_GD32_DMA dma_error: #endif spi_context_cs_control(&data->ctx, false); SPI_CTL0(cfg->reg) &= ~(SPI_CTL0_SPIEN | SPI_CTL1_DMATEN | SPI_CTL1_DMAREN); error: spi_context_release(&data->ctx, ret); return ret; } static int spi_gd32_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_gd32_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata); } #endif #ifdef CONFIG_SPI_GD32_INTERRUPT static void spi_gd32_complete(const struct device *dev, int status) { struct spi_gd32_data *data = dev->data; const struct spi_gd32_config *cfg = dev->config; SPI_CTL1(cfg->reg) &= ~(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE); #ifdef CONFIG_SPI_GD32_DMA for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) { dma_stop(cfg->dma[i].dev, cfg->dma[i].channel); } #endif spi_context_complete(&data->ctx, dev, status); } static void spi_gd32_isr(struct device *dev) { const struct spi_gd32_config *cfg = dev->config; struct spi_gd32_data *data = dev->data; int err = 0; err = spi_gd32_get_err(cfg); if (err) { spi_gd32_complete(dev, err); return; } if (spi_gd32_transfer_ongoing(data)) { err = spi_gd32_frame_exchange(dev); } if (err || !spi_gd32_transfer_ongoing(data)) { spi_gd32_complete(dev, err); } } #endif /* SPI_GD32_INTERRUPT */ #ifdef CONFIG_SPI_GD32_DMA static bool spi_gd32_chunk_transfer_finished(const struct device *dev) { struct spi_gd32_data *data = dev->data; struct spi_gd32_dma_data *dma = data->dma; const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx); return (MIN(dma[TX].count, dma[RX].count) >= chunk_len); } static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *dev = (const struct device *)arg; const struct spi_gd32_config *cfg = dev->config; struct spi_gd32_data *data = dev->data; const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx); int err = 0; if (status < 0) { LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel, status); spi_gd32_complete(dev, status); return; } for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) { if (dma_dev == cfg->dma[i].dev && channel == cfg->dma[i].channel) { data->dma[i].count += chunk_len; } } /* Check transfer finished. * The transmission of this chunk is complete if both the dma[TX].count * and the dma[RX].count reach greater than or equal to the chunk_len. * chunk_len is zero here means the transfer is already complete. */ if (spi_gd32_chunk_transfer_finished(dev)) { if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { spi_context_update_tx(&data->ctx, 1, chunk_len); spi_context_update_rx(&data->ctx, 1, chunk_len); } else { spi_context_update_tx(&data->ctx, 2, chunk_len); spi_context_update_rx(&data->ctx, 2, chunk_len); } if (spi_gd32_transfer_ongoing(data)) { /* Next chunk is available, reset the count and * continue processing */ data->dma[TX].count = 0; data->dma[RX].count = 0; } else { /* All data is processed, complete the process */ spi_context_complete(&data->ctx, dev, 0); return; } } err = spi_gd32_start_dma_transceive(dev); if (err) { spi_gd32_complete(dev, err); } } #endif /* DMA */ static int spi_gd32_release(const struct device *dev, const struct spi_config *config) { struct spi_gd32_data *data = dev->data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static const struct spi_driver_api spi_gd32_driver_api = { .transceive = spi_gd32_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_gd32_transceive_async, #endif .release = spi_gd32_release }; int spi_gd32_init(const struct device *dev) { struct spi_gd32_data *data = dev->data; const struct spi_gd32_config *cfg = dev->config; int ret; #ifdef CONFIG_SPI_GD32_DMA uint32_t ch_filter; #endif (void)clock_control_on(GD32_CLOCK_CONTROLLER, (clock_control_subsys_t)&cfg->clkid); (void)reset_line_toggle_dt(&cfg->reset); ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret) { LOG_ERR("Failed to apply pinctrl state"); return ret; } #ifdef CONFIG_SPI_GD32_DMA if ((cfg->dma[RX].dev && !cfg->dma[TX].dev) || (cfg->dma[TX].dev && !cfg->dma[RX].dev)) { LOG_ERR("DMA must be enabled for both TX and RX channels"); return -ENODEV; } for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) { if (!device_is_ready(cfg->dma[i].dev)) { LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name); return -ENODEV; } ch_filter = BIT(cfg->dma[i].channel); ret = dma_request_channel(cfg->dma[i].dev, &ch_filter); if (ret < 0) { LOG_ERR("dma_request_channel failed %d", ret); return ret; } } #endif ret = spi_context_cs_configure_all(&data->ctx); if (ret < 0) { return ret; } #ifdef CONFIG_SPI_GD32_INTERRUPT cfg->irq_configure(dev); #endif spi_context_unlock_unconditionally(&data->ctx); return 0; } #define DMA_INITIALIZER(idx, dir) \ { \ .dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)), \ .channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel), \ .slot = COND_CODE_1( \ DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \ (DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot)), (0)), \ .config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, config), \ .fifo_threshold = COND_CODE_1( \ DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \ (DT_INST_DMAS_CELL_BY_NAME(idx, dir, fifo_threshold)), \ (0)), \ } #define DMAS_DECL(idx) \ { \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), \ (DMA_INITIALIZER(idx, rx)), ({0})), \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), \ (DMA_INITIALIZER(idx, tx)), ({0})), \ } #define GD32_IRQ_CONFIGURE(idx) \ static void spi_gd32_irq_configure_##idx(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \ spi_gd32_isr, \ DEVICE_DT_INST_GET(idx), 0); \ irq_enable(DT_INST_IRQN(idx)); \ } #define GD32_SPI_INIT(idx) \ PINCTRL_DT_INST_DEFINE(idx); \ IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, (GD32_IRQ_CONFIGURE(idx))); \ static struct spi_gd32_data spi_gd32_data_##idx = { \ SPI_CONTEXT_INIT_LOCK(spi_gd32_data_##idx, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_gd32_data_##idx, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx) }; \ static struct spi_gd32_config spi_gd32_config_##idx = { \ .reg = DT_INST_REG_ADDR(idx), \ .clkid = DT_INST_CLOCKS_CELL(idx, id), \ .reset = RESET_DT_SPEC_INST_GET(idx), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ IF_ENABLED(CONFIG_SPI_GD32_DMA, (.dma = DMAS_DECL(idx),)) \ IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, \ (.irq_configure = spi_gd32_irq_configure_##idx)) }; \ DEVICE_DT_INST_DEFINE(idx, &spi_gd32_init, NULL, \ &spi_gd32_data_##idx, &spi_gd32_config_##idx, \ POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &spi_gd32_driver_api); DT_INST_FOREACH_STATUS_OKAY(GD32_SPI_INIT)