/* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "ksched.h" #include "wait_q.h" #include void ready_one_thread(_wait_q_t *wq); static int cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut, int timeout) { __ASSERT(mut->sem->count == 0, ""); int ret, key = irq_lock(); mut->sem->count = 1; ready_one_thread(&mut->sem->wait_q); _pend_current_thread(&cv->wait_q, timeout); ret = _Swap(key); /* FIXME: this extra lock (and the potential context switch it * can cause) could be optimized out. At the point of the * signal/broadcast, it's possible to detect whether or not we * will be swapping back to this particular thread and lock it * (i.e. leave the lock variable unchanged) on our behalf. * But that requires putting scheduler intelligence into this * higher level abstraction and is probably not worth it. */ pthread_mutex_lock(mut); return ret == -EAGAIN ? -ETIMEDOUT : ret; } /* This implements a "fair" scheduling policy: at the end of a POSIX * thread call that might result in a change of the current maximum * priority thread, we always check and context switch if needed. * Note that there is significant dispute in the community over the * "right" way to do this and different systems do it differently by * default. Zephyr is an RTOS, so we choose latency over * throughput. See here for a good discussion of the broad issue: * * https://blog.mozilla.org/nfroyd/2017/03/29/on-mutex-performance-part-1/ */ static void swap_or_unlock(int key) { /* API madness: use __ not _ here. The latter checks for our * preemption state, but we want to do a switch here even if * we can be preempted. */ if (!_is_in_isr() && __must_switch_threads()) { _Swap(key); } else { irq_unlock(key); } } int pthread_cond_signal(pthread_cond_t *cv) { int key = irq_lock(); ready_one_thread(&cv->wait_q); swap_or_unlock(key); return 0; } int pthread_cond_broadcast(pthread_cond_t *cv) { int key = irq_lock(); while (!sys_dlist_is_empty(&cv->wait_q)) { ready_one_thread(&cv->wait_q); } swap_or_unlock(key); return 0; } int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut) { return cond_wait(cv, mut, K_FOREVER); } int pthread_cond_timedwait(pthread_cond_t *cv, pthread_mutex_t *mut, const struct timespec *to) { return cond_wait(cv, mut, _ts_to_ms(to)); }