/* * Copyright (c) 2019, Henrik Brix Andersen * * Based on the i2c_mcux_lpi2c.c driver, which is: * Copyright (c) 2016 Freescale Semiconductor, Inc. * Copyright (c) 2019, NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT openisa_rv32m1_lpi2c #include #include #include #include #include #ifdef CONFIG_PINCTRL #include #endif LOG_MODULE_REGISTER(rv32m1_lpi2c); #include "i2c-priv.h" struct rv32m1_lpi2c_config { LPI2C_Type *base; const struct device *clock_dev; clock_control_subsys_t clock_subsys; clock_ip_name_t clock_ip_name; uint32_t clock_ip_src; uint32_t bitrate; void (*irq_config_func)(const struct device *dev); #ifdef CONFIG_PINCTRL const struct pinctrl_dev_config *pincfg; #endif }; struct rv32m1_lpi2c_data { lpi2c_master_handle_t handle; struct k_sem transfer_sync; struct k_sem completion_sync; status_t completion_status; }; static int rv32m1_lpi2c_configure(const struct device *dev, uint32_t dev_config) { const struct rv32m1_lpi2c_config *config = dev->config; uint32_t baudrate; uint32_t clk_freq; int err; if (!(I2C_MODE_CONTROLLER & dev_config)) { /* Slave mode not supported - yet */ LOG_ERR("Slave mode not supported"); return -ENOTSUP; } if (I2C_ADDR_10_BITS & dev_config) { /* FSL LPI2C driver only supports 7-bit addressing */ LOG_ERR("10 bit addressing not supported"); return -ENOTSUP; } switch (I2C_SPEED_GET(dev_config)) { case I2C_SPEED_STANDARD: baudrate = KHZ(100); break; case I2C_SPEED_FAST: baudrate = KHZ(400); break; case I2C_SPEED_FAST_PLUS: baudrate = MHZ(1); break; /* TODO: only if SCL pin implements current source pull-up */ /* case I2C_SPEED_HIGH: */ /* baudrate = KHZ(3400); */ /* break; */ /* TODO: ultra-fast requires pin_config setting */ /* case I2C_SPEED_ULTRA: */ /* baudrate = MHZ(5); */ /* break; */ default: LOG_ERR("Unsupported speed"); return -ENOTSUP; } err = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clk_freq); if (err) { LOG_ERR("Could not get clock frequency (err %d)", err); return -EINVAL; } LPI2C_MasterSetBaudRate(config->base, clk_freq, baudrate); return 0; } static void rv32m1_lpi2c_master_transfer_callback(LPI2C_Type *base, lpi2c_master_handle_t *handle, status_t completionStatus, void *userData) { struct rv32m1_lpi2c_data *data = userData; ARG_UNUSED(base); ARG_UNUSED(handle); data->completion_status = completionStatus; k_sem_give(&data->completion_sync); } static uint32_t rv32m1_lpi2c_convert_flags(int msg_flags) { uint32_t flags = 0U; if (!(msg_flags & I2C_MSG_STOP)) { flags |= kLPI2C_TransferNoStopFlag; } if (msg_flags & I2C_MSG_RESTART) { flags |= kLPI2C_TransferRepeatedStartFlag; } return flags; } static int rv32m1_lpi2c_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs, uint16_t addr) { const struct rv32m1_lpi2c_config *config = dev->config; struct rv32m1_lpi2c_data *data = dev->data; lpi2c_master_transfer_t transfer; status_t status; int ret = 0; k_sem_take(&data->transfer_sync, K_FOREVER); /* Iterate over all the messages */ for (int i = 0; i < num_msgs; i++) { if (I2C_MSG_ADDR_10_BITS & msgs->flags) { ret = -ENOTSUP; goto out; } /* Initialize the transfer descriptor */ transfer.flags = rv32m1_lpi2c_convert_flags(msgs->flags); /* Prevent the controller to send a start condition between * messages, except if explicitly requested. */ if (i != 0 && !(msgs->flags & I2C_MSG_RESTART)) { transfer.flags |= kLPI2C_TransferNoStartFlag; } transfer.slaveAddress = addr; transfer.direction = (msgs->flags & I2C_MSG_READ) ? kLPI2C_Read : kLPI2C_Write; transfer.subaddress = 0; transfer.subaddressSize = 0; transfer.data = msgs->buf; transfer.dataSize = msgs->len; /* Start the transfer */ status = LPI2C_MasterTransferNonBlocking(config->base, &data->handle, &transfer); /* Return an error if the transfer didn't start successfully * e.g., if the bus was busy */ if (status != kStatus_Success) { LOG_DBG("Could not start transfer (status %d)", status); ret = -EIO; goto out; } /* Wait for the transfer to complete */ k_sem_take(&data->completion_sync, K_FOREVER); /* Return an error if the transfer didn't complete * successfully. e.g., nak, timeout, lost arbitration */ if (data->completion_status != kStatus_Success) { LOG_DBG("Transfer failed (status %d)", data->completion_status); LPI2C_MasterTransferAbort(config->base, &data->handle); ret = -EIO; goto out; } /* Move to the next message */ msgs++; } out: k_sem_give(&data->transfer_sync); return ret; } static void rv32m1_lpi2c_isr(const struct device *dev) { const struct rv32m1_lpi2c_config *config = dev->config; struct rv32m1_lpi2c_data *data = dev->data; LPI2C_MasterTransferHandleIRQ(config->base, &data->handle); } static int rv32m1_lpi2c_init(const struct device *dev) { const struct rv32m1_lpi2c_config *config = dev->config; struct rv32m1_lpi2c_data *data = dev->data; lpi2c_master_config_t master_config; uint32_t clk_freq, dev_cfg; int err; CLOCK_SetIpSrc(config->clock_ip_name, config->clock_ip_src); if (!device_is_ready(config->clock_dev)) { LOG_ERR("clock control device not ready"); return -ENODEV; } err = clock_control_on(config->clock_dev, config->clock_subsys); if (err) { LOG_ERR("Could not turn on clock (err %d)", err); return -EINVAL; } err = clock_control_get_rate(config->clock_dev, config->clock_subsys, &clk_freq); if (err) { LOG_ERR("Could not get clock frequency (err %d)", err); return -EINVAL; } LPI2C_MasterGetDefaultConfig(&master_config); LPI2C_MasterInit(config->base, &master_config, clk_freq); LPI2C_MasterTransferCreateHandle(config->base, &data->handle, rv32m1_lpi2c_master_transfer_callback, data); dev_cfg = i2c_map_dt_bitrate(config->bitrate); err = rv32m1_lpi2c_configure(dev, dev_cfg | I2C_MODE_CONTROLLER); if (err) { LOG_ERR("Could not configure controller (err %d)", err); return err; } #ifdef CONFIG_PINCTRL err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); if (err != 0) { return err; } #endif config->irq_config_func(dev); return 0; } static const struct i2c_driver_api rv32m1_lpi2c_driver_api = { .configure = rv32m1_lpi2c_configure, .transfer = rv32m1_lpi2c_transfer, }; #ifdef CONFIG_PINCTRL #define PINCTRL_INIT(n) .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), #define PINCTRL_DEFINE(n) PINCTRL_DT_INST_DEFINE(n); #else #define PINCTRL_DEFINE(n) #define PINCTRL_INIT(n) #endif #define RV32M1_LPI2C_DEVICE(id) \ PINCTRL_DEFINE(id) \ static void rv32m1_lpi2c_irq_config_func_##id(const struct device *dev); \ static const struct rv32m1_lpi2c_config rv32m1_lpi2c_##id##_config = { \ .base = \ (LPI2C_Type *)DT_INST_REG_ADDR(id), \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \ .clock_subsys = \ (clock_control_subsys_t) DT_INST_CLOCKS_CELL(id, name),\ .clock_ip_name = INST_DT_CLOCK_IP_NAME(id), \ .clock_ip_src = kCLOCK_IpSrcFircAsync, \ .bitrate = DT_INST_PROP(id, clock_frequency), \ .irq_config_func = rv32m1_lpi2c_irq_config_func_##id, \ PINCTRL_INIT(id) \ }; \ static struct rv32m1_lpi2c_data rv32m1_lpi2c_##id##_data = { \ .transfer_sync = Z_SEM_INITIALIZER( \ rv32m1_lpi2c_##id##_data.transfer_sync, 1, 1), \ .completion_sync = Z_SEM_INITIALIZER( \ rv32m1_lpi2c_##id##_data.completion_sync, 0, 1), \ }; \ I2C_DEVICE_DT_INST_DEFINE(id, \ rv32m1_lpi2c_init, \ NULL, \ &rv32m1_lpi2c_##id##_data, \ &rv32m1_lpi2c_##id##_config, \ POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \ &rv32m1_lpi2c_driver_api); \ static void rv32m1_lpi2c_irq_config_func_##id(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(id), \ 0, \ rv32m1_lpi2c_isr, DEVICE_DT_INST_GET(id), \ 0); \ irq_enable(DT_INST_IRQN(id)); \ } \ DT_INST_FOREACH_STATUS_OKAY(RV32M1_LPI2C_DEVICE)