/* * Copyright (c) 2015-2016 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include extern const struct init_entry __init_start[]; extern const struct init_entry __init_PRE_KERNEL_1_start[]; extern const struct init_entry __init_PRE_KERNEL_2_start[]; extern const struct init_entry __init_POST_KERNEL_start[]; extern const struct init_entry __init_APPLICATION_start[]; extern const struct init_entry __init_end[]; #ifdef CONFIG_SMP extern const struct init_entry __init_SMP_start[]; #endif extern const struct device __device_start[]; extern const struct device __device_end[]; extern uint32_t __device_init_status_start[]; static inline void device_pm_state_init(const struct device *dev) { #ifdef CONFIG_PM_DEVICE *dev->pm = (struct device_pm){ .usage = ATOMIC_INIT(0), .lock = Z_SEM_INITIALIZER(dev->pm->lock, 1, 1), .signal = K_POLL_SIGNAL_INITIALIZER(dev->pm->signal), .event = K_POLL_EVENT_INITIALIZER( K_POLL_TYPE_SIGNAL, K_POLL_MODE_NOTIFY_ONLY, &dev->pm->signal), }; #endif /* CONFIG_PM_DEVICE */ } /** * @brief Initialize state for all static devices. * * The state object is always zero-initialized, but this may not be * sufficient. */ void z_device_state_init(void) { const struct device *dev = __device_start; while (dev < __device_end) { device_pm_state_init(dev); z_object_init(dev); ++dev; } } /** * @brief Execute all the init entry initialization functions at a given level * * @details Invokes the initialization routine for each init entry object * created by the INIT_ENTRY_DEFINE() macro using the specified level. * The linker script places the init entry objects in memory in the order * they need to be invoked, with symbols indicating where one level leaves * off and the next one begins. * * @param level init level to run. */ void z_sys_init_run_level(int32_t level) { static const struct init_entry *levels[] = { __init_PRE_KERNEL_1_start, __init_PRE_KERNEL_2_start, __init_POST_KERNEL_start, __init_APPLICATION_start, #ifdef CONFIG_SMP __init_SMP_start, #endif /* End marker */ __init_end, }; const struct init_entry *entry; for (entry = levels[level]; entry < levels[level+1]; entry++) { const struct device *dev = entry->dev; int rc = entry->init(dev); if (dev != NULL) { /* Mark device initialized. If initialization * failed, record the error condition. */ if (rc != 0) { if (rc < 0) { rc = -rc; } if (rc > UINT8_MAX) { rc = UINT8_MAX; } dev->state->init_res = rc; } dev->state->initialized = true; } } } const struct device *z_impl_device_get_binding(const char *name) { const struct device *dev; /* A null string identifies no device. So does an empty * string. */ if ((name == NULL) || (name[0] == '\0')) { return NULL; } /* Split the search into two loops: in the common scenario, where * device names are stored in ROM (and are referenced by the user * with CONFIG_* macros), only cheap pointer comparisons will be * performed. Reserve string comparisons for a fallback. */ for (dev = __device_start; dev != __device_end; dev++) { if (z_device_ready(dev) && (dev->name == name)) { return dev; } } for (dev = __device_start; dev != __device_end; dev++) { if (z_device_ready(dev) && (strcmp(name, dev->name) == 0)) { return dev; } } return NULL; } #ifdef CONFIG_USERSPACE static inline const struct device *z_vrfy_device_get_binding(const char *name) { char name_copy[Z_DEVICE_MAX_NAME_LEN]; if (z_user_string_copy(name_copy, (char *)name, sizeof(name_copy)) != 0) { return 0; } return z_impl_device_get_binding(name_copy); } #include static inline int z_vrfy_device_usable_check(const struct device *dev) { Z_OOPS(Z_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY)); return z_impl_device_usable_check(dev); } #include #endif /* CONFIG_USERSPACE */ size_t z_device_get_all_static(struct device const **devices) { *devices = __device_start; return __device_end - __device_start; } bool z_device_ready(const struct device *dev) { return dev->state->initialized && (dev->state->init_res == 0U); } int device_required_foreach(const struct device *dev, device_visitor_callback_t visitor_cb, void *context) { size_t handle_count = 0; const device_handle_t *handles = device_required_handles_get(dev, &handle_count); /* Iterate over fixed devices */ for (size_t i = 0; i < handle_count; ++i) { device_handle_t dh = handles[i]; const struct device *rdev = device_from_handle(dh); int rc = visitor_cb(rdev, context); if (rc < 0) { return rc; } } return handle_count; } #ifdef CONFIG_PM_DEVICE int device_pm_control_nop(const struct device *unused_device, uint32_t unused_ctrl_command, void *unused_context, device_pm_cb cb, void *unused_arg) { return -ENOTSUP; } int device_any_busy_check(void) { const struct device *dev = __device_start; while (dev < __device_end) { if (atomic_test_bit(&dev->pm->atomic_flags, DEVICE_PM_ATOMIC_FLAGS_BUSY_BIT)) { return -EBUSY; } ++dev; } return 0; } int device_busy_check(const struct device *dev) { if (atomic_test_bit(&dev->pm->atomic_flags, DEVICE_PM_ATOMIC_FLAGS_BUSY_BIT)) { return -EBUSY; } return 0; } #endif void device_busy_set(const struct device *dev) { #ifdef CONFIG_PM_DEVICE atomic_set_bit(&dev->pm->atomic_flags, DEVICE_PM_ATOMIC_FLAGS_BUSY_BIT); #else ARG_UNUSED(dev); #endif } void device_busy_clear(const struct device *dev) { #ifdef CONFIG_PM_DEVICE atomic_clear_bit(&dev->pm->atomic_flags, DEVICE_PM_ATOMIC_FLAGS_BUSY_BIT); #else ARG_UNUSED(dev); #endif }