/* * Copyright (c) 1997-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include static struct k_spinlock lock; /** * @brief Handle expiration of a kernel timer object. * * @param t Timeout used by the timer. */ void z_timer_expiration_handler(struct _timeout *t) { struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout); struct k_thread *thread; k_spinlock_key_t key = k_spin_lock(&lock); /* * if the timer is periodic, start it again; don't add _TICK_ALIGN * since we're already aligned to a tick boundary */ if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) && !K_TIMEOUT_EQ(timer->period, K_FOREVER)) { k_timeout_t next = timer->period; #ifdef CONFIG_TIMEOUT_64BIT /* Exploit the fact that uptime during a kernel * timeout handler reflects the time of the scheduled * event and not real time to get some inexpensive * protection against late interrupts. If we're * delayed for any reason, we still end up calculating * the next expiration as a regular stride from where * we "should" have run. Requires absolute timeouts. * (Note offset by one: we're nominally at the * beginning of a tick, so need to defeat the "round * down" behavior on timeout addition). */ next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + timer->period.ticks); #endif z_add_timeout(&timer->timeout, z_timer_expiration_handler, next); } /* update timer's status */ timer->status += 1U; /* invoke timer expiry function */ if (timer->expiry_fn != NULL) { /* Unlock for user handler. */ k_spin_unlock(&lock, key); timer->expiry_fn(timer); key = k_spin_lock(&lock); } if (!IS_ENABLED(CONFIG_MULTITHREADING)) { k_spin_unlock(&lock, key); return; } thread = z_waitq_head(&timer->wait_q); if (thread == NULL) { k_spin_unlock(&lock, key); return; } z_unpend_thread_no_timeout(thread); arch_thread_return_value_set(thread, 0); k_spin_unlock(&lock, key); z_ready_thread(thread); } void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn) { timer->expiry_fn = expiry_fn; timer->stop_fn = stop_fn; timer->status = 0U; if (IS_ENABLED(CONFIG_MULTITHREADING)) { z_waitq_init(&timer->wait_q); } z_init_timeout(&timer->timeout); SYS_PORT_TRACING_OBJ_INIT(k_timer, timer); timer->user_data = NULL; z_object_init(timer); } void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period) { SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period); if (K_TIMEOUT_EQ(duration, K_FOREVER)) { return; } /* z_add_timeout() always adds one to the incoming tick count * to round up to the next tick (by convention it waits for * "at least as long as the specified timeout"), but the * period interval is always guaranteed to be reset from * within the timer ISR, so no round up is desired. Subtract * one. * * Note that the duration (!) value gets the same treatment * for backwards compatibility. This is unfortunate * (i.e. k_timer_start() doesn't treat its initial sleep * argument the same way k_sleep() does), but historical. The * timer_api test relies on this behavior. */ if (!K_TIMEOUT_EQ(period, K_FOREVER) && period.ticks != 0 && Z_TICK_ABS(period.ticks) < 0) { period.ticks = MAX(period.ticks - 1, 1); } if (Z_TICK_ABS(duration.ticks) < 0) { duration.ticks = MAX(duration.ticks - 1, 0); } (void)z_abort_timeout(&timer->timeout); timer->period = period; timer->status = 0U; z_add_timeout(&timer->timeout, z_timer_expiration_handler, duration); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_start(timer, duration, period); } #include #endif void z_impl_k_timer_stop(struct k_timer *timer) { SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer); bool inactive = (z_abort_timeout(&timer->timeout) != 0); if (inactive) { return; } if (timer->stop_fn != NULL) { timer->stop_fn(timer); } if (IS_ENABLED(CONFIG_MULTITHREADING)) { struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q); if (pending_thread != NULL) { z_ready_thread(pending_thread); z_reschedule_unlocked(); } } } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_timer_stop(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_stop(timer); } #include #endif uint32_t z_impl_k_timer_status_get(struct k_timer *timer) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t result = timer->status; timer->status = 0U; k_spin_unlock(&lock, key); return result; } #ifdef CONFIG_USERSPACE static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_status_get(timer); } #include #endif uint32_t z_impl_k_timer_status_sync(struct k_timer *timer) { __ASSERT(!arch_is_in_isr(), ""); SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer); if (!IS_ENABLED(CONFIG_MULTITHREADING)) { uint32_t result; do { k_spinlock_key_t key = k_spin_lock(&lock); if (!z_is_inactive_timeout(&timer->timeout)) { result = *(volatile uint32_t *)&timer->status; timer->status = 0U; k_spin_unlock(&lock, key); if (result > 0) { break; } } else { result = timer->status; k_spin_unlock(&lock, key); break; } } while (true); return result; } k_spinlock_key_t key = k_spin_lock(&lock); uint32_t result = timer->status; if (result == 0U) { if (!z_is_inactive_timeout(&timer->timeout)) { SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER); /* wait for timer to expire or stop */ (void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER); /* get updated timer status */ key = k_spin_lock(&lock); result = timer->status; } else { /* timer is already stopped */ } } else { /* timer has already expired at least once */ } timer->status = 0U; k_spin_unlock(&lock, key); /** * @note New tracing hook */ SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result); return result; } #ifdef CONFIG_USERSPACE static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_status_sync(timer); } #include static inline k_ticks_t z_vrfy_k_timer_remaining_ticks( const struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_remaining_ticks(timer); } #include static inline k_ticks_t z_vrfy_k_timer_expires_ticks( const struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_expires_ticks(timer); } #include static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_user_data_get(timer); } #include static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer, void *user_data) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_user_data_set(timer, user_data); } #include #endif