/* k_idle.c - microkernel idle logic */ /* * Copyright (c) 1997-2010, 2012-2014 Wind River Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2) Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3) Neither the name of Wind River Systems nor the names of its contributors * may be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* DESCRIPTION Microkernel idle logic. Different forms of idling are performed by the idle task, depending on how the kernel is configured. */ #include #include #include #include #include #include #include #include #if defined(CONFIG_WORKLOAD_MONITOR) static unsigned int _k_workload_slice = 0x0; static unsigned int _k_workload_ticks = 0x0; static unsigned int _k_workload_ref_time = 0x0; static unsigned int _k_workload_t0 = 0x0; static unsigned int _k_workload_t1 = 0x0; static volatile unsigned int _k_workload_n0 = 0x0; static volatile unsigned int _k_workload_n1 = 0x0; static volatile unsigned int _k_workload_i = 0x0; static volatile unsigned int _k_workload_i0 = 0x0; static volatile unsigned int _k_workload_delta = 0x0; static volatile unsigned int _k_workload_start_time = 0x0; static volatile unsigned int _k_workload_end_time = 0x0; #ifdef WL_SCALE static extern uint32_t _k_workload_scale; #endif #define MSEC_PER_SEC 1000 /** * * @brief Shared code between workload calibration and monitoring * * Perform idle task "dummy work". * * This routine increments _k_workload_i and checks it against _k_workload_n1. * _k_workload_n1 is updated by the system tick handler, and both are kept * in close synchronization. * * @return N/A * */ static void workload_loop(void) { volatile int x = 87654321; volatile int y = 4; /* loop never terminates, except during calibration phase */ while (++_k_workload_i != _k_workload_n1) { unsigned int s_iCountDummyProc = 0; while (64 != s_iCountDummyProc++) { /* 64 == 2^6 */ x >>= y; x <<= y; y++; x >>= y; x <<= y; y--; } } } /** * * @brief Calibrate the workload monitoring subsystem * * Measures the time required to do a fixed amount of "dummy work", and * sets default values for the workload measuring period. * * @return N/A * */ void _k_workload_monitor_calibrate(void) { _k_workload_n0 = _k_workload_i = 0; _k_workload_n1 = 1000; _k_workload_t0 = timer_read(); workload_loop(); _k_workload_t1 = timer_read(); _k_workload_delta = _k_workload_t1 - _k_workload_t0; _k_workload_i0 = _k_workload_i; #ifdef WL_SCALE _k_workload_ref_time = (_k_workload_t1 - _k_workload_t0) >> (_k_workload_scale); #else _k_workload_ref_time = (_k_workload_t1 - _k_workload_t0) >> (4 + 6); #endif _k_workload_slice = 100; _k_workload_ticks = 100; } /** * * @brief Workload monitor tick handler * * If workload monitor is configured this routine updates the global variables * it uses to record the passage of time. * * @return N/A * * \NOMANUAL */ void _k_workload_monitor_update(void) { if (--_k_workload_ticks == 0) { _k_workload_t0 = _k_workload_t1; _k_workload_t1 = timer_read(); _k_workload_n0 = _k_workload_n1; _k_workload_n1 = _k_workload_i - 1; _k_workload_ticks = _k_workload_slice; } } /** * * @brief Workload monitor "start idling" handler * * Records time when idle task was selected for execution by the microkernel. * * @return N/A */ void _k_workload_monitor_idle_start(void) { _k_workload_start_time = timer_read(); } /** * * @brief Workload monitor "end idling" handler * * Records time when idle task was no longer selected for execution by the * microkernel, and updates amount of time spent idling. * * @return N/A */ void _k_workload_monitor_idle_end(void) { _k_workload_end_time = timer_read(); _k_workload_i += (_k_workload_i0 * (_k_workload_end_time - _k_workload_start_time)) / _k_workload_delta; } /** * * @brief Process request to read the processor workload * * Computes workload, or uses 0 if workload monitoring is not configured. * * @return N/A */ void _k_workload_get(struct k_args *P) { unsigned int k, t; signed int iret; k = (_k_workload_i - _k_workload_n0) * _k_workload_ref_time; #ifdef WL_SCALE t = (timer_read() - _k_workload_t0) >> (_k_workload_scale); #else t = (timer_read() - _k_workload_t0) >> (4 + 6); #endif iret = MSEC_PER_SEC - k / t; /* * Due to calibration at startup, could be slightly negative. * Ensure a negative value is never returned. */ if (iret < 0) { iret = 0; } P->Args.u1.rval = iret; } #else void _k_workload_get(struct k_args *P) { P->Args.u1.rval = 0; } #endif /* CONFIG_WORKLOAD_MONITOR */ /** * * @brief Read the processor workload * * This routine returns the workload as a number ranging from 0 to 1000. * * Each unit equals 0.1% of the time the idle task was not scheduled by the * microkernel during the period set by sys_workload_time_slice_set(). * * IMPORTANT: This workload monitor ignores any time spent servicing ISRs and * fibers! Thus, a system which has no meaningful task work to do may spend * up to 100% of its time servicing ISRs and fibers, yet report a workload of 0% * because the idle task is always the task selected by the microkernel. * * @return workload */ int task_workload_get(void) { struct k_args A; A.Comm = READWL; KERNEL_ENTRY(&A); return A.Args.u1.rval; } /** * * @brief Set workload period * * This routine specifies the workload measuring period for task_workload_get(). * * @return N/A */ void sys_workload_time_slice_set(int32_t t) { #ifdef CONFIG_WORKLOAD_MONITOR if (t < 10) { t = 10; } if (t > 1000) { t = 1000; } _k_workload_slice = t; #else ARG_UNUSED(t); #endif } unsigned char _sys_power_save_flag = 1; #if defined(CONFIG_ADVANCED_POWER_MANAGEMENT) #include #include #ifdef CONFIG_ADVANCED_IDLE #include #endif #if defined(CONFIG_TICKLESS_IDLE) #include #endif extern void nano_cpu_idle(void); extern void nano_cpu_set_idle(int32_t ticks); #if defined(CONFIG_TICKLESS_IDLE) /* * Idle time must be this value or higher for timer to go into tickless idle * state. */ int32_t _sys_idle_threshold_ticks = CONFIG_TICKLESS_IDLE_THRESH; #endif /* CONFIG_TICKLESS_IDLE */ /** * * @brief Power management policy when kernel begins idling * * This routine implements the power management policy based on the time * until the timer expires, in system ticks. * Routine is invoked from the idle task with interrupts disabled * * @return N/A * * \NOMANUAL */ void _sys_power_save_idle(int32_t ticks) { #if defined(CONFIG_TICKLESS_IDLE) if ((ticks == TICKS_UNLIMITED) || ticks >= _sys_idle_threshold_ticks) { /* * Stop generating system timer interrupts until it's time for * the next scheduled microkernel timer to expire. */ _timer_idle_enter(ticks); } #endif /* CONFIG_TICKLESS_IDLE */ #ifdef CONFIG_ADVANCED_IDLE /* * Call the advanced sleep function, which checks if the system should * enter a deep sleep state. If so, the function will return a non-zero * value when the system resumes here after the deep sleep ends. * If the time to sleep is too short to go to advanced sleep mode, the * function returns zero immediately and we do normal idle processing. */ if (_AdvIdleFunc(ticks) == 0) { nano_cpu_set_idle(ticks); nano_cpu_idle(); } #else nano_cpu_set_idle(ticks); nano_cpu_idle(); #endif /* CONFIG_ADVANCED_IDLE */ } /** * * @brief Power management policy when kernel stops idling * * This routine is invoked when the kernel leaves the idle state. * Routine can be modified to wake up other devices. * The routine is invoked from interrupt context, with interrupts disabled. * * @return N/A * * \NOMANUAL */ void _sys_power_save_idle_exit(int32_t ticks) { #ifdef CONFIG_TICKLESS_IDLE if ((ticks == TICKS_UNLIMITED) || ticks >= _sys_idle_threshold_ticks) { /* Resume normal periodic system timer interrupts */ _timer_idle_exit(); } #else ARG_UNUSED(ticks); #endif /* CONFIG_TICKLESS_IDLE */ } /** * * @brief Obtain number of ticks until next timer expires * * Must be called with interrupts locked to prevent the timer queues from * changing. * * @return Number of ticks until next timer expires. * */ static inline int32_t _get_next_timer_expiry(void) { uint32_t closest_deadline = (uint32_t)TICKS_UNLIMITED; if (_k_timer_list_head) { closest_deadline = _k_timer_list_head->duration; } return (int32_t)min(closest_deadline, _nano_get_earliest_deadline()); } #endif /** * * @brief Power saving when idle * * If the BSP sets the _sys_power_save_flag flag, this routine will call the * _sys_power_save_idle() routine in an infinite loop. If the flag is not set, * this routine will fall through and _k_kernel_idle() will try the next idling * mechanism. * * @return N/A * */ static void _power_save(void) { extern void nano_cpu_idle(void); if (_sys_power_save_flag) { for (;;) { irq_lock_inline(); #ifdef CONFIG_ADVANCED_POWER_MANAGEMENT _sys_power_save_idle(_get_next_timer_expiry()); #else /* * nano_cpu_idle () is invoked here directly only if APM is * disabled. Otherwise BSP decides either to invoke it or * to implement advanced idle functionality */ nano_cpu_idle(); #endif } /* * Code analyzers may complain that _power_save() uses an * infinite loop unless we indicate that this is intentional */ CODE_UNREACHABLE; } } /* Specify what work to do when idle task is "busy waiting" */ #ifdef CONFIG_WORKLOAD_MONITOR #define DO_IDLE_WORK() workload_loop() #else #define DO_IDLE_WORK() do { /* do nothing */ } while (0) #endif /** * * @brief Microkernel idle task * * If power save is on, we sleep; if power save is off, we "busy wait". * * @return N/A * */ int _k_kernel_idle(void) { _power_save(); /* never returns if power saving is enabled */ #ifdef CONFIG_BOOT_TIME_MEASUREMENT /* record timestamp when idling begins */ extern uint64_t __idle_tsc; __idle_tsc = _NanoTscRead(); #endif for (;;) { DO_IDLE_WORK(); } /* * Code analyzers may complain that _k_kernel_idle() uses an infinite loop * unless we indicate that this is intentional */ CODE_UNREACHABLE; }