/* * Copyright (c) 2019 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "heap.h" /* White-box sys_heap validation code. Uses internal data structures. * Not expected to be useful in production apps. This checks every * header field of every chunk and returns true if the totality of the * data structure is a valid heap. It doesn't necessarily tell you * that it is the CORRECT heap given the history of alloc/free calls * that it can't inspect. In a pathological case, you can imagine * something scribbling a copy of a previously-valid heap on top of a * running one and corrupting it. YMMV. */ static chunkid_t max_chunkid(struct z_heap *h) { return h->end_chunk - min_chunk_size(h); } #define VALIDATE(cond) do { if (!(cond)) { return false; } } while (0) static bool in_bounds(struct z_heap *h, chunkid_t c) { VALIDATE(c >= right_chunk(h, 0)); VALIDATE(c <= max_chunkid(h)); VALIDATE(chunk_size(h, c) < h->end_chunk); return true; } static bool valid_chunk(struct z_heap *h, chunkid_t c) { VALIDATE(chunk_size(h, c) > 0); VALIDATE(c + chunk_size(h, c) <= h->end_chunk); VALIDATE(in_bounds(h, c)); VALIDATE(right_chunk(h, left_chunk(h, c)) == c); VALIDATE(left_chunk(h, right_chunk(h, c)) == c); if (chunk_used(h, c)) { VALIDATE(!solo_free_header(h, c)); } else { VALIDATE(chunk_used(h, left_chunk(h, c))); VALIDATE(chunk_used(h, right_chunk(h, c))); if (!solo_free_header(h, c)) { VALIDATE(in_bounds(h, prev_free_chunk(h, c))); VALIDATE(in_bounds(h, next_free_chunk(h, c))); } } return true; } /* Validate multiple state dimensions for the bucket "next" pointer * and see that they match. Probably should unify the design a * bit... */ static inline void check_nexts(struct z_heap *h, int bidx) { struct z_heap_bucket *b = &h->buckets[bidx]; bool emptybit = (h->avail_buckets & (1 << bidx)) == 0; bool emptylist = b->next == 0; bool empties_match = emptybit == emptylist; (void)empties_match; CHECK(empties_match); if (b->next != 0) { CHECK(valid_chunk(h, b->next)); } } bool sys_heap_validate(struct sys_heap *heap) { struct z_heap *h = heap->heap; chunkid_t c; /* * Walk through the chunks linearly, verifying sizes and end pointer. */ for (c = right_chunk(h, 0); c <= max_chunkid(h); c = right_chunk(h, c)) { if (!valid_chunk(h, c)) { return false; } } if (c != h->end_chunk) { return false; /* Should have exactly consumed the buffer */ } /* Check the free lists: entry count should match, empty bit * should be correct, and all chunk entries should point into * valid unused chunks. Mark those chunks USED, temporarily. */ for (int b = 0; b <= bucket_idx(h, h->end_chunk); b++) { chunkid_t c0 = h->buckets[b].next; uint32_t n = 0; check_nexts(h, b); for (c = c0; c != 0 && (n == 0 || c != c0); n++, c = next_free_chunk(h, c)) { if (!valid_chunk(h, c)) { return false; } set_chunk_used(h, c, true); } bool empty = (h->avail_buckets & (1 << b)) == 0; bool zero = n == 0; if (empty != zero) { return false; } if (empty && h->buckets[b].next != 0) { return false; } } /* * Walk through the chunks linearly again, verifying that all chunks * but solo headers are now USED (i.e. all free blocks were found * during enumeration). Mark all such blocks UNUSED and solo headers * USED. */ chunkid_t prev_chunk = 0; for (c = right_chunk(h, 0); c <= max_chunkid(h); c = right_chunk(h, c)) { if (!chunk_used(h, c) && !solo_free_header(h, c)) { return false; } if (left_chunk(h, c) != prev_chunk) { return false; } prev_chunk = c; set_chunk_used(h, c, solo_free_header(h, c)); } if (c != h->end_chunk) { return false; /* Should have exactly consumed the buffer */ } /* Go through the free lists again checking that the linear * pass caught all the blocks and that they now show UNUSED. * Mark them USED. */ for (int b = 0; b <= bucket_idx(h, h->end_chunk); b++) { chunkid_t c0 = h->buckets[b].next; int n = 0; if (c0 == 0) { continue; } for (c = c0; n == 0 || c != c0; n++, c = next_free_chunk(h, c)) { if (chunk_used(h, c)) { return false; } set_chunk_used(h, c, true); } } /* Now we are valid, but have managed to invert all the in-use * fields. One more linear pass to fix them up */ for (c = right_chunk(h, 0); c <= max_chunkid(h); c = right_chunk(h, c)) { set_chunk_used(h, c, !chunk_used(h, c)); } return true; } struct z_heap_stress_rec { void *(*alloc_fn)(void *arg, size_t bytes); void (*free_fn)(void *arg, void *p); void *arg; size_t total_bytes; struct z_heap_stress_block *blocks; size_t nblocks; size_t blocks_alloced; size_t bytes_alloced; uint32_t target_percent; }; struct z_heap_stress_block { void *ptr; size_t sz; }; /* Very simple LCRNG (from https://nuclear.llnl.gov/CNP/rng/rngman/node4.html) * * Here to guarantee cross-platform test repeatability. */ static uint32_t rand32(void) { static uint64_t state = 123456789; /* seed */ state = state * 2862933555777941757UL + 3037000493UL; return (uint32_t)(state >> 32); } static bool rand_alloc_choice(struct z_heap_stress_rec *sr) { /* Edge cases: no blocks allocated, and no space for a new one */ if (sr->blocks_alloced == 0) { return true; } else if (sr->blocks_alloced >= sr->nblocks) { return false; } /* The way this works is to scale the chance of choosing to * allocate vs. free such that it's even odds when the heap is * at the target percent, with linear tapering on the low * slope (i.e. we choose to always allocate with an empty * heap, allocate 50% of the time when the heap is exactly at * the target, and always free when above the target). In * practice, the operations aren't quite symmetric (you can * always free, but your allocation might fail), and the units * aren't matched (we're doing math based on bytes allocated * and ignoring the overhead) but this is close enough. And * yes, the math here is coarse (in units of percent), but * that's good enough and fits well inside 32 bit quantities. * (Note precision issue when heap size is above 40MB * though!). */ __ASSERT(sr->total_bytes < 0xffffffffU / 100, "too big for u32!"); uint32_t full_pct = (100 * sr->bytes_alloced) / sr->total_bytes; uint32_t target = sr->target_percent ? sr->target_percent : 1; uint32_t free_chance = 0xffffffffU; if (full_pct < sr->target_percent) { free_chance = full_pct * (0x80000000U / target); } return rand32() > free_chance; } /* Chooses a size of block to allocate, logarithmically favoring * smaller blocks (i.e. blocks twice as large are half as frequent */ static size_t rand_alloc_size(struct z_heap_stress_rec *sr) { ARG_UNUSED(sr); /* Min scale of 4 means that the half of the requests in the * smallest size have an average size of 8 */ int scale = 4 + __builtin_clz(rand32()); return rand32() & ((1 << scale) - 1); } /* Returns the index of a randomly chosen block to free */ static size_t rand_free_choice(struct z_heap_stress_rec *sr) { return rand32() % sr->blocks_alloced; } /* General purpose heap stress test. Takes function pointers to allow * for testing multiple heap APIs with the same rig. The alloc and * free functions are passed back the argument as a context pointer. * The "log" function is for readable user output. The total_bytes * argument should reflect the size of the heap being tested. The * scratch array is used to store temporary state and should be sized * about half as large as the heap itself. Returns true on success. */ void sys_heap_stress(void *(*alloc_fn)(void *arg, size_t bytes), void (*free_fn)(void *arg, void *p), void *arg, size_t total_bytes, uint32_t op_count, void *scratch_mem, size_t scratch_bytes, int target_percent, struct z_heap_stress_result *result) { struct z_heap_stress_rec sr = { .alloc_fn = alloc_fn, .free_fn = free_fn, .arg = arg, .total_bytes = total_bytes, .blocks = scratch_mem, .nblocks = scratch_bytes / sizeof(struct z_heap_stress_block), .target_percent = target_percent, }; *result = (struct z_heap_stress_result) {0}; for (uint32_t i = 0; i < op_count; i++) { if (rand_alloc_choice(&sr)) { size_t sz = rand_alloc_size(&sr); void *p = sr.alloc_fn(sr.arg, sz); result->total_allocs++; if (p != NULL) { result->successful_allocs++; sr.blocks[sr.blocks_alloced].ptr = p; sr.blocks[sr.blocks_alloced].sz = sz; sr.blocks_alloced++; sr.bytes_alloced += sz; } } else { int b = rand_free_choice(&sr); void *p = sr.blocks[b].ptr; size_t sz = sr.blocks[b].sz; result->total_frees++; sr.blocks[b] = sr.blocks[sr.blocks_alloced - 1]; sr.blocks_alloced--; sr.bytes_alloced -= sz; sr.free_fn(sr.arg, p); } result->accumulated_in_use_bytes += sr.bytes_alloced; } } /* * Print heap info for debugging / analysis purpose */ void heap_print_info(struct z_heap *h, bool dump_chunks) { int i, nb_buckets = bucket_idx(h, h->end_chunk) + 1; size_t free_bytes, allocated_bytes, total, overhead; printk("Heap at %p contains %d units in %d buckets\n\n", chunk_buf(h), h->end_chunk, nb_buckets); printk(" bucket# min units total largest largest\n" " threshold chunks (units) (bytes)\n" " -----------------------------------------------------------\n"); for (i = 0; i < nb_buckets; i++) { chunkid_t first = h->buckets[i].next; chunksz_t largest = 0; int count = 0; if (first) { chunkid_t curr = first; do { count++; largest = MAX(largest, chunk_size(h, curr)); curr = next_free_chunk(h, curr); } while (curr != first); } if (count) { printk("%9d %12d %12d %12d %12zd\n", i, (1 << i) - 1 + min_chunk_size(h), count, largest, chunksz_to_bytes(h, largest)); } } if (dump_chunks) { printk("\nChunk dump:\n"); } free_bytes = allocated_bytes = 0; for (chunkid_t c = 0; ; c = right_chunk(h, c)) { if (chunk_used(h, c)) { if ((c != 0) && (c != h->end_chunk)) { /* 1st and last are always allocated for internal purposes */ allocated_bytes += chunksz_to_bytes(h, chunk_size(h, c)); } } else { if (!solo_free_header(h, c)) { free_bytes += chunksz_to_bytes(h, chunk_size(h, c)); } } if (dump_chunks) { printk("chunk %4d: [%c] size=%-4d left=%-4d right=%d\n", c, chunk_used(h, c) ? '*' : solo_free_header(h, c) ? '.' : '-', chunk_size(h, c), left_chunk(h, c), right_chunk(h, c)); } if (c == h->end_chunk) { break; } } /* The end marker chunk has a header. It is part of the overhead. */ total = h->end_chunk * CHUNK_UNIT + chunk_header_bytes(h); overhead = total - free_bytes - allocated_bytes; printk("\n%zd free bytes, %zd allocated bytes, overhead = %zd bytes (%zd.%zd%%)\n", free_bytes, allocated_bytes, overhead, (1000 * overhead + total/2) / total / 10, (1000 * overhead + total/2) / total % 10); } void sys_heap_print_info(struct sys_heap *heap, bool dump_chunks) { heap_print_info(heap->heap, dump_chunks); }