/* * Copyright (c) 2010-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Kernel semaphore object. * * The semaphores are of the 'counting' type, i.e. each 'give' operation will * increment the internal count by 1, if no thread is pending on it. The 'init' * call initializes the count to 'initial_count'. Following multiple 'give' * operations, the same number of 'take' operations can be performed without * the calling thread having to pend on the semaphore, or the calling task * having to poll. */ #include #include #include #include #include #include #include #include #include #include #include /* We use a system-wide lock to synchronize semaphores, which has * unfortunate performance impact vs. using a per-object lock * (semaphores are *very* widely used). But per-object locks require * significant extra RAM. A properly spin-aware semaphore * implementation would spin on atomic access to the count variable, * and not a spinlock per se. Useful optimization for the future... */ static struct k_spinlock lock; #ifdef CONFIG_OBJECT_TRACING struct k_sem *_trace_list_k_sem; /* * Complete initialization of statically defined semaphores. */ static int init_sem_module(const struct device *dev) { ARG_UNUSED(dev); Z_STRUCT_SECTION_FOREACH(k_sem, sem) { SYS_TRACING_OBJ_INIT(k_sem, sem); } return 0; } SYS_INIT(init_sem_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ int z_impl_k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit) { /* * Limit cannot be zero and count cannot be greater than limit */ CHECKIF(limit == 0U || initial_count > limit) { return -EINVAL; } sem->count = initial_count; sem->limit = limit; sys_trace_semaphore_init(sem); z_waitq_init(&sem->wait_q); #if defined(CONFIG_POLL) sys_dlist_init(&sem->poll_events); #endif SYS_TRACING_OBJ_INIT(k_sem, sem); z_object_init(sem); sys_trace_end_call(SYS_TRACE_ID_SEMA_INIT); return 0; } #ifdef CONFIG_USERSPACE int z_vrfy_k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit) { Z_OOPS(Z_SYSCALL_OBJ_INIT(sem, K_OBJ_SEM)); return z_impl_k_sem_init(sem, initial_count, limit); } #include #endif static inline void handle_poll_events(struct k_sem *sem) { #ifdef CONFIG_POLL z_handle_obj_poll_events(&sem->poll_events, K_POLL_STATE_SEM_AVAILABLE); #else ARG_UNUSED(sem); #endif } void z_impl_k_sem_give(struct k_sem *sem) { k_spinlock_key_t key = k_spin_lock(&lock); struct k_thread *thread; sys_trace_semaphore_give(sem); thread = z_unpend_first_thread(&sem->wait_q); if (thread != NULL) { arch_thread_return_value_set(thread, 0); z_ready_thread(thread); } else { sem->count += (sem->count != sem->limit) ? 1U : 0U; handle_poll_events(sem); } z_reschedule(&lock, key); sys_trace_end_call(SYS_TRACE_ID_SEMA_GIVE); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_sem_give(struct k_sem *sem) { Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM)); z_impl_k_sem_give(sem); } #include #endif int z_impl_k_sem_take(struct k_sem *sem, k_timeout_t timeout) { int ret = 0; __ASSERT(((arch_is_in_isr() == false) || K_TIMEOUT_EQ(timeout, K_NO_WAIT)), ""); k_spinlock_key_t key = k_spin_lock(&lock); sys_trace_semaphore_take(sem); if (likely(sem->count > 0U)) { sem->count--; k_spin_unlock(&lock, key); ret = 0; goto out; } if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { k_spin_unlock(&lock, key); ret = -EBUSY; goto out; } ret = z_pend_curr(&lock, key, &sem->wait_q, timeout); out: sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE); return ret; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_sem_take(struct k_sem *sem, k_timeout_t timeout) { Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM)); return z_impl_k_sem_take((struct k_sem *)sem, timeout); } #include static inline void z_vrfy_k_sem_reset(struct k_sem *sem) { Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM)); z_impl_k_sem_reset(sem); } #include static inline unsigned int z_vrfy_k_sem_count_get(struct k_sem *sem) { Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM)); return z_impl_k_sem_count_get(sem); } #include #endif