/* * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #define LOG_LEVEL CONFIG_COUNTER_LOG_LEVEL #define LOG_MODULE_NAME counter_timer #include #include LOG_MODULE_REGISTER(LOG_MODULE_NAME, LOG_LEVEL); #define DT_DRV_COMPAT nordic_nrf_timer #define TIMER_CLOCK(timer_instance) NRF_TIMER_BASE_FREQUENCY_GET(timer_instance) #define CC_TO_ID(cc_num) (cc_num - 2) #define ID_TO_CC(idx) (nrf_timer_cc_channel_t)(idx + 2) #define TOP_CH NRF_TIMER_CC_CHANNEL0 #define COUNTER_TOP_EVT NRF_TIMER_EVENT_COMPARE0 #define COUNTER_TOP_INT_MASK NRF_TIMER_INT_COMPARE0_MASK #define COUNTER_OVERFLOW_SHORT NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK #define COUNTER_READ_CC NRF_TIMER_CC_CHANNEL1 struct counter_nrfx_data { counter_top_callback_t top_cb; void *top_user_data; uint32_t guard_period; atomic_t cc_int_pending; }; struct counter_nrfx_ch_data { counter_alarm_callback_t callback; void *user_data; }; struct counter_nrfx_config { struct counter_config_info info; struct counter_nrfx_ch_data *ch_data; NRF_TIMER_Type *timer; LOG_INSTANCE_PTR_DECLARE(log); }; struct counter_timer_config { nrf_timer_bit_width_t bit_width; nrf_timer_mode_t mode; uint32_t prescaler; }; static int start(const struct device *dev) { const struct counter_nrfx_config *config = dev->config; nrf_timer_task_trigger(config->timer, NRF_TIMER_TASK_START); return 0; } static int stop(const struct device *dev) { const struct counter_nrfx_config *config = dev->config; nrf_timer_task_trigger(config->timer, NRF_TIMER_TASK_SHUTDOWN); return 0; } static uint32_t get_top_value(const struct device *dev) { const struct counter_nrfx_config *config = dev->config; return nrf_timer_cc_get(config->timer, TOP_CH); } static uint32_t read(const struct device *dev) { const struct counter_nrfx_config *config = dev->config; NRF_TIMER_Type *timer = config->timer; nrf_timer_task_trigger(timer, nrf_timer_capture_task_get(COUNTER_READ_CC)); return nrf_timer_cc_get(timer, COUNTER_READ_CC); } static int get_value(const struct device *dev, uint32_t *ticks) { *ticks = read(dev); return 0; } static uint32_t ticks_add(uint32_t val1, uint32_t val2, uint32_t top) { uint32_t to_top; if (likely(IS_BIT_MASK(top))) { return (val1 + val2) & top; } to_top = top - val1; return (val2 <= to_top) ? val1 + val2 : val2 - to_top; } static uint32_t ticks_sub(uint32_t val, uint32_t old, uint32_t top) { if (likely(IS_BIT_MASK(top))) { return (val - old) & top; } /* if top is not 2^n-1 */ return (val >= old) ? (val - old) : val + top + 1 - old; } static void set_cc_int_pending(const struct device *dev, uint8_t chan) { const struct counter_nrfx_config *config = dev->config; struct counter_nrfx_data *data = dev->data; atomic_or(&data->cc_int_pending, BIT(chan)); NRFX_IRQ_PENDING_SET(NRFX_IRQ_NUMBER_GET(config->timer)); } static int set_cc(const struct device *dev, uint8_t id, uint32_t val, uint32_t flags) { const struct counter_nrfx_config *config = dev->config; struct counter_nrfx_data *data = dev->data; __ASSERT_NO_MSG(data->guard_period < get_top_value(dev)); bool absolute = flags & COUNTER_ALARM_CFG_ABSOLUTE; bool irq_on_late; NRF_TIMER_Type *reg = config->timer; uint8_t chan = ID_TO_CC(id); nrf_timer_event_t evt = nrf_timer_compare_event_get(chan); uint32_t top = get_top_value(dev); int err = 0; uint32_t prev_val; uint32_t now; uint32_t diff; uint32_t max_rel_val; __ASSERT(nrf_timer_int_enable_check(reg, nrf_timer_compare_int_get(chan)) == 0, "Expected that CC interrupt is disabled."); /* First take care of a risk of an event coming from CC being set to * next tick. Reconfigure CC to future (now tick is the furthest * future). */ now = read(dev); prev_val = nrf_timer_cc_get(reg, chan); nrf_timer_cc_set(reg, chan, now); nrf_timer_event_clear(reg, evt); if (absolute) { max_rel_val = top - data->guard_period; irq_on_late = flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE; } else { /* If relative value is smaller than half of the counter range * it is assumed that there is a risk of setting value too late * and late detection algorithm must be applied. When late * setting is detected, interrupt shall be triggered for * immediate expiration of the timer. Detection is performed * by limiting relative distance between CC and counter. * * Note that half of counter range is an arbitrary value. */ irq_on_late = val < (top / 2); /* limit max to detect short relative being set too late. */ max_rel_val = irq_on_late ? top / 2 : top; val = ticks_add(now, val, top); } nrf_timer_cc_set(reg, chan, val); /* decrement value to detect also case when val == read(dev). Otherwise, * condition would need to include comparing diff against 0. */ diff = ticks_sub(val - 1, read(dev), top); if (diff > max_rel_val) { if (absolute) { err = -ETIME; } /* Interrupt is triggered always for relative alarm and * for absolute depending on the flag. */ if (irq_on_late) { set_cc_int_pending(dev, chan); } else { config->ch_data[id].callback = NULL; } } else { nrf_timer_int_enable(reg, nrf_timer_compare_int_get(chan)); } return err; } static int set_alarm(const struct device *dev, uint8_t chan, const struct counter_alarm_cfg *alarm_cfg) { const struct counter_nrfx_config *nrfx_config = dev->config; struct counter_nrfx_ch_data *chdata = &nrfx_config->ch_data[chan]; if (alarm_cfg->ticks > get_top_value(dev)) { return -EINVAL; } if (chdata->callback) { return -EBUSY; } chdata->callback = alarm_cfg->callback; chdata->user_data = alarm_cfg->user_data; return set_cc(dev, chan, alarm_cfg->ticks, alarm_cfg->flags); } static int cancel_alarm(const struct device *dev, uint8_t chan_id) { const struct counter_nrfx_config *config = dev->config; uint32_t int_mask = nrf_timer_compare_int_get(ID_TO_CC(chan_id)); nrf_timer_int_disable(config->timer, int_mask); config->ch_data[chan_id].callback = NULL; return 0; } static int set_top_value(const struct device *dev, const struct counter_top_cfg *cfg) { const struct counter_nrfx_config *nrfx_config = dev->config; NRF_TIMER_Type *timer = nrfx_config->timer; struct counter_nrfx_data *data = dev->data; int err = 0; for (int i = 0; i < counter_get_num_of_channels(dev); i++) { /* Overflow can be changed only when all alarms are * disables. */ if (nrfx_config->ch_data[i].callback) { return -EBUSY; } } nrf_timer_int_disable(timer, COUNTER_TOP_INT_MASK); nrf_timer_cc_set(timer, TOP_CH, cfg->ticks); nrf_timer_shorts_enable(timer, COUNTER_OVERFLOW_SHORT); data->top_cb = cfg->callback; data->top_user_data = cfg->user_data; if (!(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) { nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR); } else if (read(dev) >= cfg->ticks) { err = -ETIME; if (cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) { nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR); } } if (cfg->callback) { nrf_timer_int_enable(timer, COUNTER_TOP_INT_MASK); } return err; } static uint32_t get_pending_int(const struct device *dev) { return 0; } static int init_timer(const struct device *dev, const struct counter_timer_config *config) { const struct counter_nrfx_config *nrfx_config = dev->config; NRF_TIMER_Type *reg = nrfx_config->timer; nrf_timer_bit_width_set(reg, config->bit_width); nrf_timer_mode_set(reg, config->mode); nrf_timer_prescaler_set(reg, config->prescaler); nrf_timer_cc_set(reg, TOP_CH, counter_get_max_top_value(dev)); NRFX_IRQ_ENABLE(NRFX_IRQ_NUMBER_GET(reg)); return 0; } static uint32_t get_guard_period(const struct device *dev, uint32_t flags) { struct counter_nrfx_data *data = dev->data; return data->guard_period; } static int set_guard_period(const struct device *dev, uint32_t guard, uint32_t flags) { struct counter_nrfx_data *data = dev->data; __ASSERT_NO_MSG(guard < get_top_value(dev)); data->guard_period = guard; return 0; } static void top_irq_handle(const struct device *dev) { const struct counter_nrfx_config *config = dev->config; struct counter_nrfx_data *data = dev->data; NRF_TIMER_Type *reg = config->timer; counter_top_callback_t cb = data->top_cb; if (nrf_timer_event_check(reg, COUNTER_TOP_EVT) && nrf_timer_int_enable_check(reg, COUNTER_TOP_INT_MASK)) { nrf_timer_event_clear(reg, COUNTER_TOP_EVT); __ASSERT(cb != NULL, "top event enabled - expecting callback"); cb(dev, data->top_user_data); } } static void alarm_irq_handle(const struct device *dev, uint32_t id) { const struct counter_nrfx_config *config = dev->config; struct counter_nrfx_data *data = dev->data; uint32_t cc = ID_TO_CC(id); NRF_TIMER_Type *reg = config->timer; uint32_t int_mask = nrf_timer_compare_int_get(cc); nrf_timer_event_t evt = nrf_timer_compare_event_get(cc); bool hw_irq_pending = nrf_timer_event_check(reg, evt) && nrf_timer_int_enable_check(reg, int_mask); bool sw_irq_pending = data->cc_int_pending & BIT(cc); if (hw_irq_pending || sw_irq_pending) { struct counter_nrfx_ch_data *chdata; counter_alarm_callback_t cb; nrf_timer_event_clear(reg, evt); atomic_and(&data->cc_int_pending, ~BIT(cc)); nrf_timer_int_disable(reg, int_mask); chdata = &config->ch_data[id]; cb = chdata->callback; chdata->callback = NULL; if (cb) { uint32_t cc_val = nrf_timer_cc_get(reg, cc); cb(dev, id, cc_val, chdata->user_data); } } } static void irq_handler(const struct device *dev) { top_irq_handle(dev); for (uint32_t i = 0; i < counter_get_num_of_channels(dev); i++) { alarm_irq_handle(dev, i); } } static const struct counter_driver_api counter_nrfx_driver_api = { .start = start, .stop = stop, .get_value = get_value, .set_alarm = set_alarm, .cancel_alarm = cancel_alarm, .set_top_value = set_top_value, .get_pending_int = get_pending_int, .get_top_value = get_top_value, .get_guard_period = get_guard_period, .set_guard_period = set_guard_period, }; /* * Device instantiation is done with node labels due to HAL API * requirements. In particular, TIMERx_MAX_SIZE values from HALs * are indexed by peripheral number, so DT_INST APIs won't work. */ #define TIMER_IRQ_CONNECT(idx) \ COND_CODE_1(DT_INST_PROP(idx, zli), \ (IRQ_DIRECT_CONNECT(DT_INST_IRQN(idx), \ DT_INST_IRQ(idx, priority), \ counter_timer##idx##_isr_wrapper, \ IRQ_ZERO_LATENCY)), \ (IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \ irq_handler, DEVICE_DT_INST_GET(idx), 0)) \ ) #define COUNTER_NRFX_TIMER_DEVICE(idx) \ BUILD_ASSERT(DT_INST_PROP(idx, prescaler) <= \ TIMER_PRESCALER_PRESCALER_Msk, \ "TIMER prescaler out of range"); \ COND_CODE_1(DT_INST_PROP(idx, zli), ( \ ISR_DIRECT_DECLARE(counter_timer##idx##_isr_wrapper) \ { \ irq_handler(DEVICE_DT_INST_GET(idx)); \ /* No rescheduling, it shall not access zephyr primitives. */ \ return 0; \ }), ()) \ static int counter_##idx##_init(const struct device *dev) \ { \ TIMER_IRQ_CONNECT(idx); \ static const struct counter_timer_config config = { \ .prescaler = DT_INST_PROP(idx, prescaler), \ .mode = NRF_TIMER_MODE_TIMER, \ .bit_width = (DT_INST_PROP(idx, max_bit_width) == 32) ? \ NRF_TIMER_BIT_WIDTH_32 : NRF_TIMER_BIT_WIDTH_16, \ }; \ return init_timer(dev, &config); \ } \ static struct counter_nrfx_data counter_##idx##_data; \ static struct counter_nrfx_ch_data \ counter##idx##_ch_data[CC_TO_ID(DT_INST_PROP(idx, cc_num))]; \ LOG_INSTANCE_REGISTER(LOG_MODULE_NAME, idx, CONFIG_COUNTER_LOG_LEVEL); \ static const struct counter_nrfx_config nrfx_counter_##idx##_config = { \ .info = { \ .max_top_value = (uint32_t)BIT64_MASK(DT_INST_PROP(idx, max_bit_width)),\ .freq = TIMER_CLOCK((NRF_TIMER_Type *)DT_INST_REG_ADDR(idx)) / \ BIT(DT_INST_PROP(idx, prescaler)), \ .flags = COUNTER_CONFIG_INFO_COUNT_UP, \ .channels = CC_TO_ID(DT_INST_PROP(idx, cc_num)), \ }, \ .ch_data = counter##idx##_ch_data, \ .timer = (NRF_TIMER_Type *)DT_INST_REG_ADDR(idx), \ LOG_INSTANCE_PTR_INIT(log, LOG_MODULE_NAME, idx) \ }; \ DEVICE_DT_INST_DEFINE(idx, \ counter_##idx##_init, \ NULL, \ &counter_##idx##_data, \ &nrfx_counter_##idx##_config.info, \ PRE_KERNEL_1, CONFIG_COUNTER_INIT_PRIORITY, \ &counter_nrfx_driver_api); DT_INST_FOREACH_STATUS_OKAY(COUNTER_NRFX_TIMER_DEVICE)