/* * Copyright (c) 2016 BayLibre, SAS * Copyright (c) 2017 Linaro Ltd * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include "i2c_ll_stm32.h" #define LOG_LEVEL CONFIG_I2C_LOG_LEVEL #include #include LOG_MODULE_REGISTER(i2c_ll_stm32); #include "i2c-priv.h" int i2c_stm32_runtime_configure(const struct device *dev, uint32_t config) { const struct i2c_stm32_config *cfg = dev->config; struct i2c_stm32_data *data = dev->data; I2C_TypeDef *i2c = cfg->i2c; uint32_t clock = 0U; int ret; #if defined(CONFIG_SOC_SERIES_STM32F3X) || defined(CONFIG_SOC_SERIES_STM32F0X) LL_RCC_ClocksTypeDef rcc_clocks; /* * STM32F0/3 I2C's independent clock source supports only * HSI and SYSCLK, not APB1. We force clock variable to * SYSCLK frequency. */ LL_RCC_GetSystemClocksFreq(&rcc_clocks); clock = rcc_clocks.SYSCLK_Frequency; #else if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), (clock_control_subsys_t *) &cfg->pclken, &clock) < 0) { LOG_ERR("Failed call clock_control_get_rate"); return -EIO; } #endif /* CONFIG_SOC_SERIES_STM32F3X) || CONFIG_SOC_SERIES_STM32F0X */ data->dev_config = config; k_sem_take(&data->bus_mutex, K_FOREVER); LL_I2C_Disable(i2c); LL_I2C_SetMode(i2c, LL_I2C_MODE_I2C); ret = stm32_i2c_configure_timing(dev, clock); k_sem_give(&data->bus_mutex); return ret; } static inline int i2c_stm32_transaction(const struct device *dev, struct i2c_msg msg, uint8_t *next_msg_flags, uint16_t periph) { /* * Perform a I2C transaction, while taking into account the STM32 I2C * peripheral has a limited maximum chunk size. Take appropriate action * if the message to send exceeds that limit. * * The last chunk of a transmission uses this function's next_msg_flags * parameter for its backend calls (_write/_read). Any previous chunks * use a copy of the current message's flags, with the STOP and RESTART * bits turned off. This will cause the backend to use reload-mode, * which will make the combination of all chunks to look like one big * transaction on the wire. */ const uint32_t i2c_stm32_maxchunk = 255U; const uint8_t saved_flags = msg.flags; uint8_t combine_flags = saved_flags & ~(I2C_MSG_STOP | I2C_MSG_RESTART); uint8_t *flagsp = NULL; uint32_t rest = msg.len; int ret = 0; do { /* do ... while to allow zero-length transactions */ if (msg.len > i2c_stm32_maxchunk) { msg.len = i2c_stm32_maxchunk; msg.flags &= ~I2C_MSG_STOP; flagsp = &combine_flags; } else { msg.flags = saved_flags; flagsp = next_msg_flags; } if ((msg.flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) { ret = stm32_i2c_msg_write(dev, &msg, flagsp, periph); } else { ret = stm32_i2c_msg_read(dev, &msg, flagsp, periph); } if (ret < 0) { break; } rest -= msg.len; msg.buf += msg.len; msg.len = rest; } while (rest > 0U); return ret; } #define OPERATION(msg) (((struct i2c_msg *) msg)->flags & I2C_MSG_RW_MASK) static int i2c_stm32_transfer(const struct device *dev, struct i2c_msg *msg, uint8_t num_msgs, uint16_t slave) { struct i2c_stm32_data *data = dev->data; struct i2c_msg *current, *next; int ret = 0; /* Check for validity of all messages, to prevent having to abort * in the middle of a transfer */ current = msg; /* * Set I2C_MSG_RESTART flag on first message in order to send start * condition */ current->flags |= I2C_MSG_RESTART; for (uint8_t i = 1; i <= num_msgs; i++) { if (i < num_msgs) { next = current + 1; /* * Restart condition between messages * of different directions is required */ if (OPERATION(current) != OPERATION(next)) { if (!(next->flags & I2C_MSG_RESTART)) { ret = -EINVAL; break; } } /* Stop condition is only allowed on last message */ if (current->flags & I2C_MSG_STOP) { ret = -EINVAL; break; } } else { /* Stop condition is required for the last message */ current->flags |= I2C_MSG_STOP; } current++; } if (ret) { return ret; } /* Send out messages */ k_sem_take(&data->bus_mutex, K_FOREVER); current = msg; while (num_msgs > 0) { uint8_t *next_msg_flags = NULL; if (num_msgs > 1) { next = current + 1; next_msg_flags = &(next->flags); } ret = i2c_stm32_transaction(dev, *current, next_msg_flags, slave); if (ret < 0) { break; } current++; num_msgs--; } k_sem_give(&data->bus_mutex); return ret; } static const struct i2c_driver_api api_funcs = { .configure = i2c_stm32_runtime_configure, .transfer = i2c_stm32_transfer, #if defined(CONFIG_I2C_TARGET) .target_register = i2c_stm32_target_register, .target_unregister = i2c_stm32_target_unregister, #endif }; static int i2c_stm32_init(const struct device *dev) { const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); const struct i2c_stm32_config *cfg = dev->config; uint32_t bitrate_cfg; int ret; struct i2c_stm32_data *data = dev->data; #ifdef CONFIG_I2C_STM32_INTERRUPT k_sem_init(&data->device_sync_sem, 0, K_SEM_MAX_LIMIT); cfg->irq_config_func(dev); #endif /* Configure dt provided device signals when available */ ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { LOG_ERR("I2C pinctrl setup failed (%d)", ret); return ret; } /* * initialize mutex used when multiple transfers * are taking place to guarantee that each one is * atomic and has exclusive access to the I2C bus. */ k_sem_init(&data->bus_mutex, 1, 1); if (!device_is_ready(clk)) { LOG_ERR("clock control device not ready"); return -ENODEV; } if (clock_control_on(clk, (clock_control_subsys_t *) &cfg->pclken) != 0) { LOG_ERR("i2c: failure enabling clock"); return -EIO; } #if defined(CONFIG_SOC_SERIES_STM32F3X) || defined(CONFIG_SOC_SERIES_STM32F0X) /* * STM32F0/3 I2C's independent clock source supports only * HSI and SYSCLK, not APB1. We force I2C clock source to SYSCLK. * I2C2 on STM32F0 uses APB1 clock as I2C clock source */ switch ((uint32_t)cfg->i2c) { #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c1), okay) case DT_REG_ADDR(DT_NODELABEL(i2c1)): LL_RCC_SetI2CClockSource(LL_RCC_I2C1_CLKSOURCE_SYSCLK); break; #endif #if defined(CONFIG_SOC_SERIES_STM32F3X) && \ DT_NODE_HAS_STATUS(DT_NODELABEL(i2c2), okay) case DT_REG_ADDR(DT_NODELABEL(i2c2)): LL_RCC_SetI2CClockSource(LL_RCC_I2C2_CLKSOURCE_SYSCLK); break; #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c3), okay) case DT_REG_ADDR(DT_NODELABEL(i2c3)): LL_RCC_SetI2CClockSource(LL_RCC_I2C3_CLKSOURCE_SYSCLK); break; #endif } #endif /* CONFIG_SOC_SERIES_STM32F3X) || CONFIG_SOC_SERIES_STM32F0X */ #if defined(CONFIG_SOC_SERIES_STM32F1X) /* * Force i2c reset for STM32F1 series. * So that they can enter master mode properly. * Issue described in ES096 2.14.7 */ I2C_TypeDef * i2c = cfg->i2c; LL_I2C_EnableReset(i2c); LL_I2C_DisableReset(i2c); #endif bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate); ret = i2c_stm32_runtime_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg); if (ret < 0) { LOG_ERR("i2c: failure initializing"); return ret; } return 0; } /* Macros for I2C instance declaration */ #ifdef CONFIG_I2C_STM32_INTERRUPT #ifdef CONFIG_I2C_STM32_COMBINED_INTERRUPT #define STM32_I2C_IRQ_CONNECT_AND_ENABLE(name) \ do { \ IRQ_CONNECT(DT_IRQN(DT_NODELABEL(name)), \ DT_IRQ(DT_NODELABEL(name), priority), \ stm32_i2c_combined_isr, \ DEVICE_DT_GET(DT_NODELABEL(name)), 0); \ irq_enable(DT_IRQN(DT_NODELABEL(name))); \ } while (false) #else #define STM32_I2C_IRQ_CONNECT_AND_ENABLE(name) \ do { \ IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(name), event, irq),\ DT_IRQ_BY_NAME(DT_NODELABEL(name), event, \ priority),\ stm32_i2c_event_isr, \ DEVICE_DT_GET(DT_NODELABEL(name)), 0); \ irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(name), event, irq));\ \ IRQ_CONNECT(DT_IRQ_BY_NAME(DT_NODELABEL(name), error, irq),\ DT_IRQ_BY_NAME(DT_NODELABEL(name), error, \ priority),\ stm32_i2c_error_isr, \ DEVICE_DT_GET(DT_NODELABEL(name)), 0); \ irq_enable(DT_IRQ_BY_NAME(DT_NODELABEL(name), error, irq));\ } while (false) #endif /* CONFIG_I2C_STM32_COMBINED_INTERRUPT */ #define STM32_I2C_IRQ_HANDLER_DECL(name) \ static void i2c_stm32_irq_config_func_##name(const struct device *dev) #define STM32_I2C_IRQ_HANDLER_FUNCTION(name) \ .irq_config_func = i2c_stm32_irq_config_func_##name, #define STM32_I2C_IRQ_HANDLER(name) \ static void i2c_stm32_irq_config_func_##name(const struct device *dev) \ { \ STM32_I2C_IRQ_CONNECT_AND_ENABLE(name); \ } #else #define STM32_I2C_IRQ_HANDLER_DECL(name) #define STM32_I2C_IRQ_HANDLER_FUNCTION(name) #define STM32_I2C_IRQ_HANDLER(name) #endif /* CONFIG_I2C_STM32_INTERRUPT */ #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_i2c_v2) #define DEFINE_TIMINGS(name) \ static const uint32_t i2c_timings_##name[] = \ DT_PROP_OR(DT_NODELABEL(name), timings, {}); #define USE_TIMINGS(name) \ .timings = (const struct i2c_config_timing *) i2c_timings_##name, \ .n_timings = ARRAY_SIZE(i2c_timings_##name), #else /* V2 */ #define DEFINE_TIMINGS(name) #define USE_TIMINGS(name) #endif /* V2 */ #define STM32_I2C_INIT(name) \ STM32_I2C_IRQ_HANDLER_DECL(name); \ \ DEFINE_TIMINGS(name) \ \ PINCTRL_DT_DEFINE(DT_NODELABEL(name)); \ \ static const struct i2c_stm32_config i2c_stm32_cfg_##name = { \ .i2c = (I2C_TypeDef *)DT_REG_ADDR(DT_NODELABEL(name)), \ .pclken = { \ .enr = DT_CLOCKS_CELL(DT_NODELABEL(name), bits), \ .bus = DT_CLOCKS_CELL(DT_NODELABEL(name), bus), \ }, \ STM32_I2C_IRQ_HANDLER_FUNCTION(name) \ .bitrate = DT_PROP(DT_NODELABEL(name), clock_frequency), \ .pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_NODELABEL(name)), \ USE_TIMINGS(name) \ }; \ \ static struct i2c_stm32_data i2c_stm32_dev_data_##name; \ \ I2C_DEVICE_DT_DEFINE(DT_NODELABEL(name), i2c_stm32_init, \ NULL, &i2c_stm32_dev_data_##name, \ &i2c_stm32_cfg_##name, \ POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \ &api_funcs); \ \ STM32_I2C_IRQ_HANDLER(name) /* I2C instances declaration */ #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c1), okay) STM32_I2C_INIT(i2c1); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c2), okay) STM32_I2C_INIT(i2c2); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c3), okay) STM32_I2C_INIT(i2c3); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c4), okay) STM32_I2C_INIT(i2c4); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(i2c5), okay) STM32_I2C_INIT(i2c5); #endif