#ifndef LIST_H #define LIST_H /* * Copied from include/linux/... */ #undef offsetof #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) /** * @brief Cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */ #define container_of(ptr, type, member) ({ \ const typeof( ((type *)0)->member ) *__mptr = (ptr); \ (type *)( (char *)__mptr - offsetof(type,member) );}) struct list_head { struct list_head *next, *prev; }; #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) /** * @brief Get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. */ #define list_entry(ptr, type, member) \ container_of(ptr, type, member) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry(pos, head, member) \ for (pos = list_entry((head)->next, typeof(*pos), member); \ &pos->member != (head); \ pos = list_entry(pos->member.next, typeof(*pos), member)) /** * @brief Iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. */ #define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_entry((head)->next, typeof(*pos), member), \ n = list_entry(pos->member.next, typeof(*pos), member); \ &pos->member != (head); \ pos = n, n = list_entry(n->member.next, typeof(*n), member)) /** * @brief Tests whether a list is empty * @head: the list to test. */ static inline int list_empty(const struct list_head *head) { return head->next == head; } /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *_new, struct list_head *prev, struct list_head *next) { next->prev = _new; _new->next = next; _new->prev = prev; prev->next = _new; } /** * @brief Add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *_new, struct list_head *head) { __list_add(_new, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head *prev, struct list_head *next) { next->prev = prev; prev->next = next; } #define LIST_POISON1 ((void *) 0x00100100) #define LIST_POISON2 ((void *) 0x00200200) /** * @brief Deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->next = (struct list_head*)LIST_POISON1; entry->prev = (struct list_head*)LIST_POISON2; } #endif