/* * Copyright (c) 2018 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include "pm_stats.h" #include "device_system_managed.h" #include LOG_MODULE_REGISTER(pm, CONFIG_PM_LOG_LEVEL); static ATOMIC_DEFINE(z_post_ops_required, CONFIG_MP_MAX_NUM_CPUS); static sys_slist_t pm_notifiers = SYS_SLIST_STATIC_INIT(&pm_notifiers); /* * Properly initialize cpu power states. Do not make assumptions that * ACTIVE_STATE is 0 */ #define CPU_PM_STATE_INIT(_, __) \ { .state = PM_STATE_ACTIVE } static struct pm_state_info z_cpus_pm_state[] = { LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,)) }; static struct pm_state_info z_cpus_pm_forced_state[] = { LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,)) }; static struct k_spinlock pm_forced_state_lock; static struct k_spinlock pm_notifier_lock; /* * Function called to notify when the system is entering / exiting a * power state */ static inline void pm_state_notify(bool entering_state) { struct pm_notifier *notifier; k_spinlock_key_t pm_notifier_key; void (*callback)(enum pm_state state); pm_notifier_key = k_spin_lock(&pm_notifier_lock); SYS_SLIST_FOR_EACH_CONTAINER(&pm_notifiers, notifier, _node) { if (entering_state) { callback = notifier->state_entry; } else { callback = notifier->state_exit; } if (callback) { callback(z_cpus_pm_state[_current_cpu->id].state); } } k_spin_unlock(&pm_notifier_lock, pm_notifier_key); } static inline int32_t ticks_expiring_sooner(int32_t ticks1, int32_t ticks2) { /* * Ticks are relative numbers that defines the number of ticks * until the next event. * Its maximum value is K_TICKS_FOREVER ((uint32_t)-1) which is -1 * when we cast it to (int32_t) * We need to find out which one is the closest */ __ASSERT(ticks1 >= -1, "ticks1 has unexpected negative value"); __ASSERT(ticks2 >= -1, "ticks2 has unexpected negative value"); if (ticks1 == K_TICKS_FOREVER) { return ticks2; } if (ticks2 == K_TICKS_FOREVER) { return ticks1; } /* At this step ticks1 and ticks2 are positive */ return MIN(ticks1, ticks2); } void pm_system_resume(void) { uint8_t id = _current_cpu->id; /* * This notification is called from the ISR of the event * that caused exit from kernel idling after PM operations. * * Some CPU low power states require enabling of interrupts * atomically when entering those states. The wake up from * such a state first executes code in the ISR of the interrupt * that caused the wake. This hook will be called from the ISR. * For such CPU LPS states, do post operations and restores here. * The kernel scheduler will get control after the ISR finishes * and it may schedule another thread. */ if (atomic_test_and_clear_bit(z_post_ops_required, id)) { #ifdef CONFIG_PM_DEVICE_SYSTEM_MANAGED if (atomic_add(&_cpus_active, 1) == 0) { if ((z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) && !z_cpus_pm_state[id].pm_device_disabled) { pm_resume_devices(); } } #endif pm_state_exit_post_ops(z_cpus_pm_state[id].state, z_cpus_pm_state[id].substate_id); pm_state_notify(false); #ifdef CONFIG_SYS_CLOCK_EXISTS sys_clock_idle_exit(); #endif /* CONFIG_SYS_CLOCK_EXISTS */ z_cpus_pm_state[id] = (struct pm_state_info){PM_STATE_ACTIVE, 0, 0}; } } bool pm_state_force(uint8_t cpu, const struct pm_state_info *info) { k_spinlock_key_t key; __ASSERT(info->state < PM_STATE_COUNT, "Invalid power state %d!", info->state); key = k_spin_lock(&pm_forced_state_lock); z_cpus_pm_forced_state[cpu] = *info; k_spin_unlock(&pm_forced_state_lock, key); return true; } bool pm_system_suspend(int32_t kernel_ticks) { uint8_t id = _current_cpu->id; k_spinlock_key_t key; int32_t ticks, events_ticks; SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, kernel_ticks); /* * CPU needs to be fully wake up before the event is triggered. * We need to find out first the ticks to the next event */ events_ticks = pm_policy_next_event_ticks(); ticks = ticks_expiring_sooner(kernel_ticks, events_ticks); key = k_spin_lock(&pm_forced_state_lock); if (z_cpus_pm_forced_state[id].state != PM_STATE_ACTIVE) { z_cpus_pm_state[id] = z_cpus_pm_forced_state[id]; z_cpus_pm_forced_state[id].state = PM_STATE_ACTIVE; } else { const struct pm_state_info *info; info = pm_policy_next_state(id, ticks); if (info != NULL) { z_cpus_pm_state[id] = *info; } else { z_cpus_pm_state[id].state = PM_STATE_ACTIVE; } } k_spin_unlock(&pm_forced_state_lock, key); if (z_cpus_pm_state[id].state == PM_STATE_ACTIVE) { LOG_DBG("No PM operations done."); SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks, z_cpus_pm_state[id].state); return false; } #ifdef CONFIG_PM_DEVICE_SYSTEM_MANAGED if (atomic_sub(&_cpus_active, 1) == 1) { if ((z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) && !z_cpus_pm_state[id].pm_device_disabled) { if (!pm_suspend_devices()) { pm_resume_devices(); z_cpus_pm_state[id].state = PM_STATE_ACTIVE; (void)atomic_add(&_cpus_active, 1); SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks, z_cpus_pm_state[id].state); return false; } } } #endif if ((z_cpus_pm_state[id].exit_latency_us != 0) && (ticks != K_TICKS_FOREVER)) { /* * We need to set the timer to interrupt a little bit early to * accommodate the time required by the CPU to fully wake up. */ sys_clock_set_timeout(ticks - k_us_to_ticks_ceil32( z_cpus_pm_state[id].exit_latency_us), true); } /* * This function runs with interruptions locked but it is * expected the SoC to unlock them in * pm_state_exit_post_ops() when returning to active * state. We don't want to be scheduled out yet, first we need * to send a notification about leaving the idle state. So, * we lock the scheduler here and unlock just after we have * sent the notification in pm_system_resume(). */ k_sched_lock(); pm_stats_start(); /* Enter power state */ pm_state_notify(true); atomic_set_bit(z_post_ops_required, id); pm_state_set(z_cpus_pm_state[id].state, z_cpus_pm_state[id].substate_id); pm_stats_stop(); /* Wake up sequence starts here */ pm_stats_update(z_cpus_pm_state[id].state); pm_system_resume(); k_sched_unlock(); SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks, z_cpus_pm_state[id].state); return true; } void pm_notifier_register(struct pm_notifier *notifier) { k_spinlock_key_t pm_notifier_key = k_spin_lock(&pm_notifier_lock); sys_slist_append(&pm_notifiers, ¬ifier->_node); k_spin_unlock(&pm_notifier_lock, pm_notifier_key); } int pm_notifier_unregister(struct pm_notifier *notifier) { int ret = -EINVAL; k_spinlock_key_t pm_notifier_key; pm_notifier_key = k_spin_lock(&pm_notifier_lock); if (sys_slist_find_and_remove(&pm_notifiers, &(notifier->_node))) { ret = 0; } k_spin_unlock(&pm_notifier_lock, pm_notifier_key); return ret; } const struct pm_state_info *pm_state_next_get(uint8_t cpu) { return &z_cpus_pm_state[cpu]; } void z_pm_save_idle_exit(void) { /* Some CPU low power states require notification at the ISR * to allow any operations that needs to be done before kernel * switches task or processes nested interrupts. * This can be simply ignored if not required. */ pm_system_resume(); }