/* * Copyright (c) 2013-2015 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief ARM Cortex-M systick device driver * * This module implements the kernel's CORTEX-M ARM's systick device driver. * It provides the standard kernel "system clock driver" interfaces. * * The driver utilizes systick to provide kernel ticks. * * \INTERNAL IMPLEMENTATION DETAILS * The systick device provides a 24-bit clear-on-write, decrementing, * wrap-on-zero counter. Only edge sensitive triggered interrupt is supported. * */ #include #include #include #include #include #include #include #include /* running total of timer count */ static volatile u32_t clock_accumulated_count; /* * A board support package's board.h header must provide definitions for the * following constants: * * CONFIG_SYSTICK_CLOCK_FREQ * * This is the sysTick input clock frequency. */ #include #ifdef CONFIG_TICKLESS_IDLE #define TIMER_MODE_PERIODIC 0 /* normal running mode */ #define TIMER_MODE_ONE_SHOT 1 /* emulated, since sysTick has 1 mode */ #define IDLE_NOT_TICKLESS 0 /* non-tickless idle mode */ #define IDLE_TICKLESS 1 /* tickless idle mode */ #endif /* CONFIG_TICKLESS_IDLE */ extern void _ExcExit(void); #ifdef CONFIG_SYS_POWER_MANAGEMENT extern s32_t _NanoIdleValGet(void); extern void _NanoIdleValClear(void); extern void _sys_power_save_idle_exit(s32_t ticks); #endif #ifdef CONFIG_TICKLESS_IDLE extern s32_t _sys_idle_elapsed_ticks; #endif #ifdef CONFIG_TICKLESS_IDLE static u32_t __noinit default_load_value; /* default count */ #ifndef CONFIG_TICKLESS_KERNEL static u32_t idle_original_count; #endif #ifdef CONFIG_TICKLESS_KERNEL static u32_t timer_overflow; #endif static u32_t __noinit max_system_ticks; static u32_t idle_original_ticks; static u32_t __noinit max_load_value; static u32_t __noinit timer_idle_skew; static unsigned char timer_mode = TIMER_MODE_PERIODIC; static unsigned char idle_mode = IDLE_NOT_TICKLESS; #endif /* CONFIG_TICKLESS_IDLE */ #if defined(CONFIG_TICKLESS_IDLE) || \ defined(CONFIG_SYSTEM_CLOCK_DISABLE) /** * * @brief Stop the timer * * This routine disables the systick counter. * * @return N/A */ static ALWAYS_INLINE void sysTickStop(void) { u32_t reg; /* * Disable the counter and its interrupt while preserving the * remaining bits. */ reg = SysTick->CTRL; reg &= ~(SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk); SysTick->CTRL = reg; } #endif /* CONFIG_TICKLESS_IDLE || CONFIG_SYSTEM_CLOCK_DISABLE */ #ifdef CONFIG_TICKLESS_IDLE /** * * @brief Start the timer * * This routine enables the systick counter. * * @return N/A */ static ALWAYS_INLINE void sysTickStart(void) { u32_t reg; /* * Enable the counter, its interrupt and set the clock source to be * the system clock while preserving the remaining bits. */ reg = SysTick->CTRL; /* countflag is cleared by this read */ reg |= SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_CLKSOURCE_Msk; SysTick->CTRL = reg; } /** * * @brief Get the current counter value * * This routine gets the value from the timer's current value register. This * value is the 'time' remaining to decrement before the timer triggers an * interrupt. * * @return the current counter value */ static ALWAYS_INLINE u32_t sysTickCurrentGet(void) { #ifdef CONFIG_TICKLESS_KERNEL /* * Counter can rollover if irqs are locked for too long. * Return 0 to indicate programmed cycles have expired. */ if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) || (timer_overflow)) { timer_overflow = 1; return 0; } #endif return SysTick->VAL; } #ifdef CONFIG_TICKLESS_KERNEL static ALWAYS_INLINE void sys_tick_reload(void) { /* Triggers immediate reload of count when clock is already running */ SysTick->VAL = 0; } #endif /** * * @brief Get the reload/countdown value * * This routine returns the value from the reload value register. * * @return the counter's initial count/wraparound value */ static ALWAYS_INLINE u32_t sysTickReloadGet(void) { return SysTick->LOAD; } #endif /* CONFIG_TICKLESS_IDLE */ /** * * @brief Set the reload/countdown value * * This routine sets value from which the timer will count down and also * sets the timer's current value register to zero. * Note that the value given is assumed to be valid (i.e., count < (1<<24)). * * @return N/A */ static ALWAYS_INLINE void sysTickReloadSet( u32_t count /* count from which timer is to count down */ ) { /* * Write the reload value and clear the current value in preparation * for enabling the timer. * The countflag in the control/status register is also cleared by * this operation. */ SysTick->LOAD = count; SysTick->VAL = 0; /* also clears the countflag */ } /** * * @brief System clock tick handler * * This routine handles the system clock tick interrupt. A TICK_EVENT event * is pushed onto the kernel stack. * * The symbol for this routine is either _timer_int_handler. * * @return N/A */ void _timer_int_handler(void *unused) { ARG_UNUSED(unused); #ifdef CONFIG_EXECUTION_BENCHMARKING extern void read_timer_start_of_tick_handler(void); read_timer_start_of_tick_handler(); #endif #ifdef CONFIG_KERNEL_EVENT_LOGGER_INTERRUPT extern void _sys_k_event_logger_interrupt(void); _sys_k_event_logger_interrupt(); #endif #ifdef CONFIG_SYS_POWER_MANAGEMENT s32_t numIdleTicks; /* * All interrupts are disabled when handling idle wakeup. * For tickless idle, this ensures that the calculation and programming * of * the device for the next timer deadline is not interrupted. * For non-tickless idle, this ensures that the clearing of the kernel * idle * state is not interrupted. * In each case, _sys_power_save_idle_exit is called with interrupts * disabled. */ __asm__(" cpsid i"); /* PRIMASK = 1 */ #ifdef CONFIG_TICKLESS_IDLE #if defined(CONFIG_TICKLESS_KERNEL) if (!idle_original_ticks) { if (_sys_clock_always_on) { _sys_clock_tick_count = _get_elapsed_clock_time(); /* clear overflow tracking flag as it is accounted */ timer_overflow = 0; sysTickStop(); idle_original_ticks = max_system_ticks; sysTickReloadSet(max_load_value); sysTickStart(); sys_tick_reload(); } __asm__(" cpsie i"); /* re-enable interrupts (PRIMASK = 0) */ _ExcExit(); return; } idle_mode = IDLE_NOT_TICKLESS; _sys_idle_elapsed_ticks = idle_original_ticks; /* * Clear programmed ticks before announcing elapsed time so * that recursive calls to _update_elapsed_time() will not * announce already consumed elapsed time */ idle_original_ticks = 0; _sys_clock_tick_announce(); /* _sys_clock_tick_announce() could cause new programming */ if (!idle_original_ticks && _sys_clock_always_on) { _sys_clock_tick_count = _get_elapsed_clock_time(); /* clear overflow tracking flag as it is accounted */ timer_overflow = 0; sysTickStop(); sysTickReloadSet(max_load_value); sysTickStart(); sys_tick_reload(); } #else /* * If this a wakeup from a completed tickless idle or after * _timer_idle_exit has processed a partial idle, return * to the normal tick cycle. */ if (timer_mode == TIMER_MODE_ONE_SHOT) { sysTickStop(); sysTickReloadSet(default_load_value); sysTickStart(); timer_mode = TIMER_MODE_PERIODIC; } /* set the number of elapsed ticks and announce them to the kernel */ if (idle_mode == IDLE_TICKLESS) { /* tickless idle completed without interruption */ idle_mode = IDLE_NOT_TICKLESS; _sys_idle_elapsed_ticks = idle_original_ticks + 1; /* actual # of idle ticks */ _sys_clock_tick_announce(); } else { _sys_clock_final_tick_announce(); } /* accumulate total counter value */ clock_accumulated_count += default_load_value * _sys_idle_elapsed_ticks; #endif #else /* !CONFIG_TICKLESS_IDLE */ /* * No tickless idle: * Update the total tick count and announce this tick to the kernel. */ clock_accumulated_count += sys_clock_hw_cycles_per_tick; _sys_clock_tick_announce(); #endif /* CONFIG_TICKLESS_IDLE */ numIdleTicks = _NanoIdleValGet(); /* get # of idle ticks requested */ if (numIdleTicks) { _NanoIdleValClear(); /* clear kernel idle setting */ /* * Complete idle processing. * Note that for tickless idle, nothing will be done in * _timer_idle_exit. */ _sys_power_save_idle_exit(numIdleTicks); } __asm__(" cpsie i"); /* re-enable interrupts (PRIMASK = 0) */ #else /* !CONFIG_SYS_POWER_MANAGEMENT */ /* accumulate total counter value */ clock_accumulated_count += sys_clock_hw_cycles_per_tick; /* * one more tick has occurred -- don't need to do anything special since * timer is already configured to interrupt on the following tick */ _sys_clock_tick_announce(); #endif /* CONFIG_SYS_POWER_MANAGEMENT */ #ifdef CONFIG_EXECUTION_BENCHMARKING extern void read_timer_end_of_tick_handler(void); read_timer_end_of_tick_handler(); #endif extern void _ExcExit(void); _ExcExit(); } #ifdef CONFIG_TICKLESS_KERNEL u32_t _get_program_time(void) { return idle_original_ticks; } u32_t _get_remaining_program_time(void) { if (idle_original_ticks == 0) { return 0; } return (u32_t)ceiling_fraction((u32_t)sysTickCurrentGet(), default_load_value); } u32_t _get_elapsed_program_time(void) { if (idle_original_ticks == 0) { return 0; } return idle_original_ticks - (sysTickCurrentGet() / default_load_value); } void _set_time(u32_t time) { if (!time) { idle_original_ticks = 0; return; } idle_original_ticks = time > max_system_ticks ? max_system_ticks : time; _sys_clock_tick_count = _get_elapsed_clock_time(); /* clear overflow tracking flag as it is accounted */ timer_overflow = 0; sysTickStop(); sysTickReloadSet(idle_original_ticks * default_load_value); sysTickStart(); sys_tick_reload(); } void _enable_sys_clock(void) { if (!(SysTick->CTRL & SysTick_CTRL_ENABLE_Msk)) { sysTickStart(); sys_tick_reload(); } } static inline u64_t get_elapsed_count(void) { u64_t elapsed; if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) || (timer_overflow)) { elapsed = SysTick->LOAD; /* Keep track of overflow till it is accounted in * _sys_clock_tick_count as COUNTFLAG bit is clear on read */ timer_overflow = 1; } else { elapsed = (SysTick->LOAD - SysTick->VAL); } elapsed += (_sys_clock_tick_count * default_load_value); return elapsed; } u64_t _get_elapsed_clock_time(void) { return get_elapsed_count() / default_load_value; } #endif #ifdef CONFIG_TICKLESS_IDLE /** * * @brief Initialize the tickless idle feature * * This routine initializes the tickless idle feature by calculating the * necessary hardware-specific parameters. * * Note that the maximum number of ticks that can elapse during a "tickless idle" * is limited by . The larger the value (the lower the * tick frequency), the fewer elapsed ticks during a "tickless idle". * Conversely, the smaller the value (the higher the tick frequency), the * more elapsed ticks during a "tickless idle". * * @return N/A */ static void sysTickTicklessIdleInit(void) { /* enable counter, disable interrupt and set clock src to system clock */ u32_t ctrl = SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_CLKSOURCE_Msk; volatile u32_t dummy; /* used to help determine the 'skew time' */ /* store the default reload value (which has already been set) */ default_load_value = sysTickReloadGet(); /* calculate the max number of ticks with this 24-bit H/W counter */ max_system_ticks = 0x00ffffff / default_load_value; /* determine the associated load value */ max_load_value = max_system_ticks * default_load_value; /* * Calculate the skew from switching the timer in and out of idle mode. * The following sequence is emulated: * 1. Stop the timer. * 2. Read the current counter value. * 3. Calculate the new/remaining counter reload value. * 4. Load the new counter value. * 5. Set the timer mode to periodic/one-shot. * 6. Start the timer. * * The timer must be running for this to work, so enable the * systick counter without generating interrupts, using the processor *clock. * Note that the reload value has already been set by the caller. */ SysTick->CTRL |= ctrl; __ISB(); timer_idle_skew = sysTickCurrentGet(); /* start of skew time */ SysTick->CTRL |= ctrl; /* normally sysTickStop() */ dummy = sysTickCurrentGet(); /* emulate sysTickReloadSet() */ /* emulate calculation of the new counter reload value */ if ((dummy == 1) || (dummy == default_load_value)) { dummy = max_system_ticks - 1; dummy += max_load_value - default_load_value; } else { dummy = dummy - 1; dummy += dummy * default_load_value; } /* _sysTickStart() without interrupts */ SysTick->CTRL |= ctrl; timer_mode = TIMER_MODE_PERIODIC; /* skew time calculation for down counter (assumes no rollover) */ timer_idle_skew -= sysTickCurrentGet(); /* restore the previous sysTick state */ sysTickStop(); sysTickReloadSet(default_load_value); #ifdef CONFIG_TICKLESS_KERNEL idle_original_ticks = 0; #endif } /** * * @brief Place the system timer into idle state * * Re-program the timer to enter into the idle state for the given number of * ticks. It is set to a "one shot" mode where it will fire in the number of * ticks supplied or the maximum number of ticks that can be programmed into * hardware. A value of -1 will result in the maximum number of ticks. * * @return N/A */ void _timer_idle_enter(s32_t ticks /* system ticks */ ) { #ifdef CONFIG_TICKLESS_KERNEL if (ticks != K_FOREVER) { /* Need to reprogram only if current program is smaller */ if (ticks > idle_original_ticks) { _set_time(ticks); } } else { sysTickStop(); idle_original_ticks = 0; } idle_mode = IDLE_TICKLESS; #else sysTickStop(); /* * We're being asked to have the timer fire in "ticks" from now. To * maintain accuracy we must account for the remaining time left in the * timer. So we read the count out of it and add it to the requested * time out */ idle_original_count = sysTickCurrentGet() - timer_idle_skew; if ((ticks == -1) || (ticks > max_system_ticks)) { /* * We've been asked to fire the timer so far in the future that * the required count value would not fit in the 24-bit reload * register. * Instead, we program for the maximum programmable interval * minus one system tick to prevent overflow when the left over * count read earlier is added. */ idle_original_count += max_load_value - default_load_value; idle_original_ticks = max_system_ticks - 1; } else { /* * leave one tick of buffer to have to time react when coming * back */ idle_original_ticks = ticks - 1; idle_original_count += idle_original_ticks * default_load_value; } /* * Set timer to virtual "one shot" mode - sysTick does not have multiple * modes, so the reload value is simply changed. */ timer_mode = TIMER_MODE_ONE_SHOT; idle_mode = IDLE_TICKLESS; sysTickReloadSet(idle_original_count); sysTickStart(); #endif } /** * * @brief Handling of tickless idle when interrupted * * The routine, called by _sys_power_save_idle_exit, is responsible for taking * the timer out of idle mode and generating an interrupt at the next * tick interval. It is expected that interrupts have been disabled. * * Note that in this routine, _sys_idle_elapsed_ticks must be zero because the * ticker has done its work and consumed all the ticks. This has to be true * otherwise idle mode wouldn't have been entered in the first place. * * @return N/A */ void _timer_idle_exit(void) { #ifdef CONFIG_TICKLESS_KERNEL if (idle_mode == IDLE_TICKLESS) { idle_mode = IDLE_NOT_TICKLESS; if (!idle_original_ticks && _sys_clock_always_on) { _sys_clock_tick_count = _get_elapsed_clock_time(); timer_overflow = 0; sysTickReloadSet(max_load_value); sysTickStart(); sys_tick_reload(); } } #else u32_t count; /* timer's current count register value */ if (timer_mode == TIMER_MODE_PERIODIC) { /* * The timer interrupt handler is handling a completed tickless * idle or this has been called by mistake; there's nothing to * do here. */ return; } sysTickStop(); /* timer is in idle mode, adjust the ticks expired */ count = sysTickCurrentGet(); if ((count == 0) || (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk)) { /* * The timer expired and/or wrapped around. Re-set the timer to * its default value and mode. */ sysTickReloadSet(default_load_value); timer_mode = TIMER_MODE_PERIODIC; /* * Announce elapsed ticks to the kernel. Note we are guaranteed * that the timer ISR will execute before the tick event is * serviced, so _sys_idle_elapsed_ticks is adjusted to account * for it. */ _sys_idle_elapsed_ticks = idle_original_ticks - 1; _sys_clock_tick_announce(); } else { u32_t elapsed; /* elapsed "counter time" */ u32_t remaining; /* remaining "counter time" */ elapsed = idle_original_count - count; remaining = elapsed % default_load_value; /* ensure that the timer will interrupt at the next tick */ if (remaining == 0) { /* * Idle was interrupted on a tick boundary. Re-set the * timer to its default value and mode. */ sysTickReloadSet(default_load_value); timer_mode = TIMER_MODE_PERIODIC; } else if (count > remaining) { /* * There is less time remaining to the next tick * boundary than time left for idle. Leave in "one * shot" mode. */ sysTickReloadSet(remaining); } _sys_idle_elapsed_ticks = elapsed / default_load_value; if (_sys_idle_elapsed_ticks) { _sys_clock_tick_announce(); } } clock_accumulated_count += default_load_value * _sys_idle_elapsed_ticks; idle_mode = IDLE_NOT_TICKLESS; sysTickStart(); #endif } #endif /* CONFIG_TICKLESS_IDLE */ /** * * @brief Initialize and enable the system clock * * This routine is used to program the systick to deliver interrupts at the * rate specified via the 'sys_clock_us_per_tick' global variable. * * @return 0 */ int _sys_clock_driver_init(struct device *device) { /* enable counter, interrupt and set clock src to system clock */ u32_t ctrl = SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_CLKSOURCE_Msk; ARG_UNUSED(device); /* * Determine the reload value to achieve the configured tick rate. */ /* systick supports 24-bit H/W counter */ __ASSERT(sys_clock_hw_cycles_per_tick <= (1 << 24), "sys_clock_hw_cycles_per_tick too large"); sysTickReloadSet(sys_clock_hw_cycles_per_tick - 1); #ifdef CONFIG_TICKLESS_IDLE /* calculate hardware-specific parameters for tickless idle */ sysTickTicklessIdleInit(); #endif /* CONFIG_TICKLESS_IDLE */ NVIC_SetPriority(SysTick_IRQn, _IRQ_PRIO_OFFSET); SysTick->CTRL = ctrl; SysTick->VAL = 0; /* triggers immediate reload of count */ return 0; } /** * * @brief Read the platform's timer hardware * * This routine returns the current time in terms of timer hardware clock * cycles. * * @return up counter of elapsed clock cycles * * \INTERNAL WARNING * systick counter is a 24-bit down counter which is reset to "reload" value * once it reaches 0. */ u32_t _timer_cycle_get_32(void) { #ifdef CONFIG_TICKLESS_KERNEL return (u32_t) get_elapsed_count(); #else u32_t cac, count; do { cac = clock_accumulated_count; #ifdef CONFIG_TICKLESS_IDLE /* When we leave a tickless period the reload value of the timer * can be set to a remaining value to wait until end of tick. * (see _timer_idle_exit). The remaining value is always smaller * than default_load_value. In this case the time elapsed until * the timer restart was not yet added to * clock_accumulated_count. To retrieve a correct cycle count * we must therefore consider the number of cycle since current * tick period start and not only the cycle number since * the timer restart. */ if (SysTick->LOAD < default_load_value) { count = default_load_value; } else { count = SysTick->LOAD; } count -= SysTick->VAL; #else count = SysTick->LOAD - SysTick->VAL; #endif } while (cac != clock_accumulated_count); return cac + count; #endif } #ifdef CONFIG_SYSTEM_CLOCK_DISABLE /** * * @brief Stop announcing ticks into the kernel * * This routine disables the systick so that timer interrupts are no * longer delivered. * * @return N/A */ void sys_clock_disable(void) { unsigned int key; /* interrupt lock level */ key = irq_lock(); /* disable the systick counter and systick interrupt */ sysTickStop(); irq_unlock(key); } #endif /* CONFIG_SYSTEM_CLOCK_DISABLE */