/* * Copyright (c) 2016 Nordic Semiconductor ASA * Copyright (c) 2016 Vinayak Kariappa Chettimada * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include "nrf_clock.h" #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) #include #include #endif static u8_t m16src_ref; static u8_t m16src_grd; static u8_t k32src_initialized; static int _m16src_start(struct device *dev, clock_control_subsys_t sub_system) { u32_t imask; bool blocking; /* If the clock is already started then just increment refcount. * If the start and stop don't happen in pairs, a rollover will * be caught and in that case system should assert. */ /* Test for reference increment from zero and resource guard not taken. */ imask = irq_lock(); if (m16src_ref++) { irq_unlock(imask); goto hf_already_started; } if (m16src_grd) { m16src_ref--; irq_unlock(imask); return -EAGAIN; } m16src_grd = 1; irq_unlock(imask); /* If blocking then spin-wait in CPU sleep until 16MHz clock settles. */ blocking = POINTER_TO_UINT(sub_system); if (blocking) { u32_t intenset; irq_disable(POWER_CLOCK_IRQn); NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; intenset = NRF_CLOCK->INTENSET; nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART); while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) { __WFE(); __SEV(); __WFE(); } NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; if (!(intenset & CLOCK_INTENSET_HFCLKSTARTED_Msk)) { nrf_clock_int_disable(NRF_CLOCK_INT_HF_STARTED_MASK); } NVIC_ClearPendingIRQ(POWER_CLOCK_IRQn); irq_enable(POWER_CLOCK_IRQn); } else { NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART); } /* release resource guard */ m16src_grd = 0; hf_already_started: /* rollover should not happen as start and stop shall be * called in pairs. */ __ASSERT_NO_MSG(m16src_ref); if (NRF_CLOCK->HFCLKSTAT & CLOCK_HFCLKSTAT_STATE_Msk) { return 0; } else { return -EINPROGRESS; } } static int _m16src_stop(struct device *dev, clock_control_subsys_t sub_system) { u32_t imask; ARG_UNUSED(sub_system); /* Test for started resource, if so, decrement reference and acquire * resource guard. */ imask = irq_lock(); if (!m16src_ref) { irq_unlock(imask); return -EALREADY; } if (--m16src_ref) { irq_unlock(imask); return -EBUSY; } if (m16src_grd) { m16src_ref++; irq_unlock(imask); return -EAGAIN; } m16src_grd = 1; irq_unlock(imask); /* re-entrancy and mult-context safe, and reference count is zero, */ nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP); /* release resource guard */ m16src_grd = 0; return 0; } static int _k32src_start(struct device *dev, clock_control_subsys_t sub_system) { u32_t lf_clk_src; u32_t intenset; u32_t imask; /* If the LF clock is already started, but wasn't initialized with * this function, allow it to run once. This is needed because if a * soft reset is triggered while watchdog is active, the LF clock will * already be running, but won't be configured yet (watchdog forces LF * clock to be running). * * That is, a hardware check won't work here, because even if the LF * clock is already running it might not be initialized. We need an * initialized flag. */ imask = irq_lock(); if (k32src_initialized) { irq_unlock(imask); goto lf_already_started; } k32src_initialized = 1; irq_unlock(imask); irq_disable(POWER_CLOCK_IRQn); NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; intenset = NRF_CLOCK->INTENSET; nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK); /* Set LF Clock Source */ lf_clk_src = POINTER_TO_UINT(sub_system); NRF_CLOCK->LFCLKSRC = lf_clk_src; /* Start and spin-wait until clock settles */ nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART); while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) { __WFE(); __SEV(); __WFE(); } NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; if (!(intenset & CLOCK_INTENSET_LFCLKSTARTED_Msk)) { nrf_clock_int_disable(NRF_CLOCK_INT_LF_STARTED_MASK); } NVIC_ClearPendingIRQ(POWER_CLOCK_IRQn); irq_enable(POWER_CLOCK_IRQn); /* If RC selected, calibrate and start timer for consecutive * calibrations. */ nrf_clock_int_disable(NRF_CLOCK_INT_DONE_MASK | NRF_CLOCK_INT_CTTO_MASK); NRF_CLOCK->EVENTS_DONE = 0; NRF_CLOCK->EVENTS_CTTO = 0; if ((lf_clk_src & CLOCK_LFCLKSRC_SRC_Msk) == CLOCK_LFCLKSRC_SRC_RC) { int err; /* Set the Calibration Timer Initial Value */ NRF_CLOCK->CTIV = 16; /* 4s in 0.25s units */ /* Enable DONE and CTTO IRQs */ nrf_clock_int_enable(NRF_CLOCK_INT_DONE_MASK | NRF_CLOCK_INT_CTTO_MASK); /* Start HF clock, if already started then explicitly * assert IRQ. * NOTE: The INTENSET is used as state flag to start * calibration in ISR. */ nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK); err = _m16src_start(dev, false); if (!err) { NVIC_SetPendingIRQ(POWER_CLOCK_IRQn); } else { __ASSERT_NO_MSG(err == -EINPROGRESS); } } lf_already_started: if (NRF_CLOCK->LFCLKSTAT & CLOCK_LFCLKSTAT_STATE_Msk) { return 0; } else { return -EINPROGRESS; } } #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) static inline void power_event_cb(nrf_power_event_t event) { extern void nrf5_usbd_power_event_callback(nrf_power_event_t event); nrf5_usbd_power_event_callback(event); } #endif static void _power_clock_isr(void *arg) { u8_t pof, hf_intenset, hf_stat, hf, lf, done, ctto; #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) bool usb_detected, usb_pwr_rdy, usb_removed; #endif struct device *dev = arg; pof = (NRF_POWER->EVENTS_POFWARN != 0); hf_intenset = ((NRF_CLOCK->INTENSET & CLOCK_INTENSET_HFCLKSTARTED_Msk) != 0); hf_stat = ((NRF_CLOCK->HFCLKSTAT & CLOCK_HFCLKSTAT_STATE_Msk) != 0); hf = (NRF_CLOCK->EVENTS_HFCLKSTARTED != 0); lf = (NRF_CLOCK->EVENTS_LFCLKSTARTED != 0); done = (NRF_CLOCK->EVENTS_DONE != 0); ctto = (NRF_CLOCK->EVENTS_CTTO != 0); #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) usb_detected = nrf_power_event_check(NRF_POWER_EVENT_USBDETECTED); usb_pwr_rdy = nrf_power_event_check(NRF_POWER_EVENT_USBPWRRDY); usb_removed = nrf_power_event_check(NRF_POWER_EVENT_USBREMOVED); __ASSERT_NO_MSG(pof || hf || hf_intenset || lf || done || ctto || usb_detected || usb_pwr_rdy || usb_removed); #else __ASSERT_NO_MSG(pof || hf || hf_intenset || lf || done || ctto); #endif if (pof) { NRF_POWER->EVENTS_POFWARN = 0; } if (hf) { NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; } if (hf_intenset && hf_stat) { /* INTENSET is used as state flag to start calibration, * hence clear it here. */ NRF_CLOCK->INTENCLR = CLOCK_INTENCLR_HFCLKSTARTED_Msk; /* Start Calibration */ NRF_CLOCK->TASKS_CAL = 1; } if (lf) { NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; __ASSERT_NO_MSG(0); } if (done) { int err; NRF_CLOCK->EVENTS_DONE = 0; /* Calibration done, stop 16M Xtal. */ err = _m16src_stop(dev, NULL); __ASSERT_NO_MSG(!err); /* Start timer for next calibration. */ NRF_CLOCK->TASKS_CTSTART = 1; } if (ctto) { int err; NRF_CLOCK->EVENTS_CTTO = 0; /* Start HF clock, if already started * then explicitly assert IRQ; we use the INTENSET * as a state flag to start calibration. */ NRF_CLOCK->INTENSET = CLOCK_INTENSET_HFCLKSTARTED_Msk; err = _m16src_start(dev, false); if (!err) { NVIC_SetPendingIRQ(POWER_CLOCK_IRQn); } else { __ASSERT_NO_MSG(err == -EINPROGRESS); } } #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) if (usb_detected) { nrf_power_event_clear(NRF_POWER_EVENT_USBDETECTED); power_event_cb(NRF_POWER_EVENT_USBDETECTED); } if (usb_pwr_rdy) { nrf_power_event_clear(NRF_POWER_EVENT_USBPWRRDY); power_event_cb(NRF_POWER_EVENT_USBPWRRDY); } if (usb_removed) { nrf_power_event_clear(NRF_POWER_EVENT_USBREMOVED); power_event_cb(NRF_POWER_EVENT_USBREMOVED); } #endif } static int _clock_control_init(struct device *dev) { /* TODO: Initialization will be called twice, once for 32KHz and then * for 16 MHz clock. The vector is also shared for other power related * features. Hence, design a better way to init IRQISR when adding * power peripheral driver and/or new SoC series. * NOTE: Currently the operations here are idempotent. */ IRQ_CONNECT(NRF5_IRQ_POWER_CLOCK_IRQn, CONFIG_CLOCK_CONTROL_NRF5_IRQ_PRIORITY, _power_clock_isr, 0, 0); irq_enable(POWER_CLOCK_IRQn); return 0; } static const struct clock_control_driver_api _m16src_clock_control_api = { .on = _m16src_start, .off = _m16src_stop, .get_rate = NULL, }; DEVICE_AND_API_INIT(clock_nrf5_m16src, CONFIG_CLOCK_CONTROL_NRF5_M16SRC_DRV_NAME, _clock_control_init, NULL, NULL, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &_m16src_clock_control_api); static const struct clock_control_driver_api _k32src_clock_control_api = { .on = _k32src_start, .off = NULL, .get_rate = NULL, }; DEVICE_AND_API_INIT(clock_nrf5_k32src, CONFIG_CLOCK_CONTROL_NRF5_K32SRC_DRV_NAME, _clock_control_init, NULL, NULL, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &_k32src_clock_control_api); #if defined(CONFIG_USB) && defined(CONFIG_SOC_NRF52840) static void power_int_enable(bool enable) { u32_t mask; mask = NRF_POWER_INT_USBDETECTED_MASK | NRF_POWER_INT_USBREMOVED_MASK | NRF_POWER_INT_USBPWRRDY_MASK; if (enable) { nrf_power_int_enable(mask); } else { nrf_power_int_disable(mask); } } static bool usbregstatus_vbusdet_get(void) { return nrf_power_usbregstatus_vbusdet_get(); } static bool usbregstatus_outrdy_get(void) { return nrf_power_usbregstatus_outrdy_get(); } static const struct usbd_power_nrf5_api usbd_power_api = { .usb_power_int_enable = power_int_enable, .vbusdet_get = usbregstatus_vbusdet_get, .outrdy_get = usbregstatus_outrdy_get, }; static int usbd_power_init(struct device *dev) { irq_enable(POWER_CLOCK_IRQn); return 0; } void nrf5_power_usb_power_int_enable(struct device *dev, bool enable) { const struct usbd_power_nrf5_api *api = dev->driver_api; api->usb_power_int_enable(enable); } bool nrf5_power_clock_usb_vbusdet(struct device *dev) { const struct usbd_power_nrf5_api *api = dev->driver_api; return api->vbusdet_get(); } bool nrf5_power_clock_usb_outrdy(struct device *dev) { const struct usbd_power_nrf5_api *api = dev->driver_api; return api->outrdy_get(); } DEVICE_AND_API_INIT(usbd_power_nrf5, CONFIG_USBD_NRF5_NAME, usbd_power_init, NULL, NULL, PRE_KERNEL_2, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &usbd_power_api); #endif