/* adc_qmsi.c - QMSI ADC driver */ /* * Copyright (c) 2016 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "qm_isr.h" #include "qm_adc.h" #include "clk.h" enum { ADC_STATE_IDLE, ADC_STATE_BUSY, ADC_STATE_ERROR }; struct adc_info { atomic_t state; device_sync_call_t sync; struct nano_sem sem; }; static void adc_config_irq(void); static qm_adc_config_t cfg; #if (CONFIG_ADC_QMSI_INTERRUPT) static struct adc_info *adc_context; static void complete_callback(void *data, int error, qm_adc_status_t status, qm_adc_cb_source_t source) { if (adc_context) { if (error) { adc_context->state = ADC_STATE_ERROR; } device_sync_call_complete(&adc_context->sync); } } #endif static void adc_lock(struct adc_info *data) { nano_sem_take(&data->sem, TICKS_UNLIMITED); data->state = ADC_STATE_BUSY; } static void adc_unlock(struct adc_info *data) { nano_sem_give(&data->sem); data->state = ADC_STATE_IDLE; } #if (CONFIG_ADC_QMSI_CALIBRATION) static void adc_qmsi_enable(struct device *dev) { struct adc_info *info = dev->driver_data; adc_lock(info); qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_NORM_CAL); qm_adc_calibrate(QM_ADC_0); adc_unlock(info); } #else static void adc_qmsi_enable(struct device *dev) { struct adc_info *info = dev->driver_data; adc_lock(info); qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_NORM_NO_CAL); adc_unlock(info); } #endif /* CONFIG_ADC_QMSI_CALIBRATION */ static void adc_qmsi_disable(struct device *dev) { struct adc_info *info = dev->driver_data; adc_lock(info); /* Go to deep sleep */ qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_DEEP_PWR_DOWN); adc_unlock(info); } #if (CONFIG_ADC_QMSI_POLL) static int adc_qmsi_read(struct device *dev, struct adc_seq_table *seq_tbl) { int i, ret = 0; qm_adc_xfer_t xfer; qm_adc_status_t status; struct adc_info *info = dev->driver_data; for (i = 0; i < seq_tbl->num_entries; i++) { xfer.ch = (qm_adc_channel_t *)&seq_tbl->entries[i].channel_id; /* Just one channel at the time using the Zephyr sequence table */ xfer.ch_len = 1; xfer.samples = (qm_adc_sample_t *)seq_tbl->entries[i].buffer; /* buffer length (bytes) the number of samples, the QMSI Driver * does not allow more than QM_ADC_FIFO_LEN samples at the time * in polling mode, if that happens, the qm_adc_convert api will * return with an error */ xfer.samples_len = (seq_tbl->entries[i].buffer_length)/sizeof(qm_adc_sample_t); xfer.callback = NULL; xfer.callback_data = NULL; cfg.window = seq_tbl->entries[i].sampling_delay; adc_lock(info); if (qm_adc_set_config(QM_ADC_0, &cfg) != 0) { ret = -EINVAL; adc_unlock(info); break; } /* Run the conversion, here the function will poll for the * samples. The function will constantly read the status * register to check if the number of samples required has been * captured */ if (qm_adc_convert(QM_ADC_0, &xfer, &status) != 0) { ret = -EIO; adc_unlock(info); break; } /* Successful Analog to Digital conversion */ adc_unlock(info); } return ret; } #else static int adc_qmsi_read(struct device *dev, struct adc_seq_table *seq_tbl) { int i, ret = 0; qm_adc_xfer_t xfer; struct adc_info *info = dev->driver_data; for (i = 0; i < seq_tbl->num_entries; i++) { xfer.ch = (qm_adc_channel_t *)&seq_tbl->entries[i].channel_id; /* Just one channel at the time using the Zephyr sequence table */ xfer.ch_len = 1; xfer.samples = (qm_adc_sample_t *)seq_tbl->entries[i].buffer; xfer.samples_len = (seq_tbl->entries[i].buffer_length)/sizeof(qm_adc_sample_t); xfer.callback = complete_callback; xfer.callback_data = NULL; cfg.window = seq_tbl->entries[i].sampling_delay; adc_lock(info); if (qm_adc_set_config(QM_ADC_0, &cfg) != 0) { ret = -EINVAL; adc_unlock(info); break; } /* ADC info used by the callbacks */ adc_context = info; /* This is the interrupt driven API, will generate and interrupt and * call the complete_callback function once the samples have been * obtained */ if (qm_adc_irq_convert(QM_ADC_0, &xfer) != 0) { adc_context = NULL; ret = -EIO; adc_unlock(info); break; } /* Wait for the interrupt to finish */ device_sync_call_wait(&info->sync); if (info->state == ADC_STATE_ERROR) { ret = -EIO; adc_unlock(info); break; } adc_context = NULL; /* Successful Analog to Digital conversion */ adc_unlock(info); } return ret; } #endif /* CONFIG_ADC_QMSI_POLL */ static struct adc_driver_api api_funcs = { .enable = adc_qmsi_enable, .disable = adc_qmsi_disable, .read = adc_qmsi_read, }; int adc_qmsi_init(struct device *dev) { struct adc_info *info = dev->driver_data; /* Enable the ADC and set the clock divisor */ clk_periph_enable(CLK_PERIPH_CLK | CLK_PERIPH_ADC | CLK_PERIPH_ADC_REGISTER); /* ADC clock divider*/ clk_adc_set_div(CONFIG_ADC_QMSI_CLOCK_RATIO); /* Set up config */ /* Clock cycles between the start of each sample */ cfg.window = CONFIG_ADC_QMSI_SERIAL_DELAY; cfg.resolution = CONFIG_ADC_QMSI_SAMPLE_WIDTH; qm_adc_set_config(QM_ADC_0, &cfg); device_sync_call_init(&info->sync); nano_sem_init(&info->sem); nano_sem_give(&info->sem); info->state = ADC_STATE_IDLE; adc_config_irq(); return 0; } struct adc_info adc_info_dev; DEVICE_AND_API_INIT(adc_qmsi, CONFIG_ADC_0_NAME, &adc_qmsi_init, &adc_info_dev, NULL, SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, (void *)&api_funcs); static void adc_config_irq(void) { IRQ_CONNECT(QM_IRQ_ADC_0, CONFIG_ADC_0_IRQ_PRI, qm_adc_0_isr, NULL, (IOAPIC_LEVEL | IOAPIC_HIGH)); irq_enable(QM_IRQ_ADC_0); QM_SCSS_INT->int_adc_calib_mask &= ~BIT(0); }