/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #define LOCKED(lck) for (k_spinlock_key_t __i = {}, \ __key = k_spin_lock(lck); \ __i.key == 0; \ k_spin_unlock(lck, __key), __i.key = 1) static uint64_t curr_tick; static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list); static struct k_spinlock timeout_lock; #define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \ ? K_TICKS_FOREVER : INT_MAX) /* Cycles left to process in the currently-executing z_clock_announce() */ static int announce_remaining; #if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; #ifdef CONFIG_USERSPACE static inline int z_vrfy_z_clock_hw_cycles_per_sec_runtime_get(void) { return z_impl_z_clock_hw_cycles_per_sec_runtime_get(); } #include #endif /* CONFIG_USERSPACE */ #endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */ static struct _timeout *first(void) { sys_dnode_t *t = sys_dlist_peek_head(&timeout_list); return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node); } static struct _timeout *next(struct _timeout *t) { sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node); return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node); } static void remove_timeout(struct _timeout *t) { if (next(t) != NULL) { next(t)->dticks += t->dticks; } sys_dlist_remove(&t->node); } static int32_t elapsed(void) { return announce_remaining == 0 ? z_clock_elapsed() : 0; } static int32_t next_timeout(void) { struct _timeout *to = first(); int32_t ticks_elapsed = elapsed(); int32_t ret = to == NULL ? MAX_WAIT : MAX(0, to->dticks - ticks_elapsed); #ifdef CONFIG_TIMESLICING if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) { ret = _current_cpu->slice_ticks; } #endif return ret; } void z_add_timeout(struct _timeout *to, _timeout_func_t fn, k_timeout_t timeout) { if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { return; } #ifdef CONFIG_LEGACY_TIMEOUT_API k_ticks_t ticks = timeout; #else k_ticks_t ticks = timeout.ticks + 1; if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(ticks) >= 0) { ticks = Z_TICK_ABS(ticks) - (curr_tick + elapsed()); } #endif __ASSERT(!sys_dnode_is_linked(&to->node), ""); to->fn = fn; ticks = MAX(1, ticks); LOCKED(&timeout_lock) { struct _timeout *t; to->dticks = ticks + elapsed(); for (t = first(); t != NULL; t = next(t)) { __ASSERT(t->dticks >= 0, ""); if (t->dticks > to->dticks) { t->dticks -= to->dticks; sys_dlist_insert(&t->node, &to->node); break; } to->dticks -= t->dticks; } if (t == NULL) { sys_dlist_append(&timeout_list, &to->node); } if (to == first()) { z_clock_set_timeout(next_timeout(), false); } } } int z_abort_timeout(struct _timeout *to) { int ret = -EINVAL; LOCKED(&timeout_lock) { if (sys_dnode_is_linked(&to->node)) { remove_timeout(to); ret = 0; } } return ret; } /* must be locked */ static k_ticks_t timeout_rem(struct _timeout *timeout) { k_ticks_t ticks = 0; if (z_is_inactive_timeout(timeout)) { return 0; } for (struct _timeout *t = first(); t != NULL; t = next(t)) { ticks += t->dticks; if (timeout == t) { break; } } return ticks - elapsed(); } k_ticks_t z_timeout_remaining(struct _timeout *timeout) { k_ticks_t ticks = 0; LOCKED(&timeout_lock) { ticks = timeout_rem(timeout); } return ticks; } k_ticks_t z_timeout_expires(struct _timeout *timeout) { k_ticks_t ticks = 0; LOCKED(&timeout_lock) { ticks = curr_tick + timeout_rem(timeout); } return ticks; } int32_t z_get_next_timeout_expiry(void) { int32_t ret = (int32_t) K_TICKS_FOREVER; LOCKED(&timeout_lock) { ret = next_timeout(); } return ret; } void z_set_timeout_expiry(int32_t ticks, bool idle) { LOCKED(&timeout_lock) { int next = next_timeout(); bool sooner = (next == K_TICKS_FOREVER) || (ticks < next); bool imminent = next <= 1; /* Only set new timeouts when they are sooner than * what we have. Also don't try to set a timeout when * one is about to expire: drivers have internal logic * that will bump the timeout to the "next" tick if * it's not considered to be settable as directed. * SMP can't use this optimization though: we don't * know when context switches happen until interrupt * exit and so can't get the timeslicing clamp folded * in. */ if (!imminent && (sooner || IS_ENABLED(CONFIG_SMP))) { z_clock_set_timeout(ticks, idle); } } } void z_clock_announce(int32_t ticks) { #ifdef CONFIG_TIMESLICING z_time_slice(ticks); #endif k_spinlock_key_t key = k_spin_lock(&timeout_lock); announce_remaining = ticks; while (first() != NULL && first()->dticks <= announce_remaining) { struct _timeout *t = first(); int dt = t->dticks; curr_tick += dt; announce_remaining -= dt; t->dticks = 0; remove_timeout(t); k_spin_unlock(&timeout_lock, key); t->fn(t); key = k_spin_lock(&timeout_lock); } if (first() != NULL) { first()->dticks -= announce_remaining; } curr_tick += announce_remaining; announce_remaining = 0; z_clock_set_timeout(next_timeout(), false); k_spin_unlock(&timeout_lock, key); } int64_t z_tick_get(void) { uint64_t t = 0U; LOCKED(&timeout_lock) { t = curr_tick + z_clock_elapsed(); } return t; } uint32_t z_tick_get_32(void) { #ifdef CONFIG_TICKLESS_KERNEL return (uint32_t)z_tick_get(); #else return (uint32_t)curr_tick; #endif } int64_t z_impl_k_uptime_ticks(void) { return z_tick_get(); } #ifdef CONFIG_USERSPACE static inline int64_t z_vrfy_k_uptime_ticks(void) { return z_impl_k_uptime_ticks(); } #include #endif /* Returns the uptime expiration (relative to an unlocked "now"!) of a * timeout object. When used correctly, this should be called once, * synchronously with the user passing a new timeout value. It should * not be used iteratively to adjust a timeout. */ uint64_t z_timeout_end_calc(k_timeout_t timeout) { k_ticks_t dt; if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { return UINT64_MAX; } else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { return z_tick_get(); } #ifdef CONFIG_LEGACY_TIMEOUT_API dt = k_ms_to_ticks_ceil32(timeout); #else dt = timeout.ticks; if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) { return Z_TICK_ABS(dt); } #endif return z_tick_get() + MAX(1, dt); }