/* * Copyright (c) 2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file @brief mutex kernel services * * This module contains routines for handling mutex locking and unlocking. * * Mutexes implement a priority inheritance algorithm that boosts the priority * level of the owning thread to match the priority level of the highest * priority thread waiting on the mutex. * * Each mutex that contributes to priority inheritance must be released in the * reverse order in which it was acquired. Furthermore each subsequent mutex * that contributes to raising the owning thread's priority level must be * acquired at a point after the most recent "bumping" of the priority level. * * For example, if thread A has two mutexes contributing to the raising of its * priority level, the second mutex M2 must be acquired by thread A after * thread A's priority level was bumped due to owning the first mutex M1. * When releasing the mutex, thread A must release M2 before it releases M1. * Failure to follow this nested model may result in threads running at * unexpected priority levels (too high, or too low). */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* We use a global spinlock here because some of the synchronization * is protecting things like owner thread priorities which aren't * "part of" a single k_mutex. Should move those bits of the API * under the scheduler lock so we can break this up. */ static struct k_spinlock lock; #ifdef CONFIG_OBJECT_TRACING struct k_mutex *_trace_list_k_mutex; /* * Complete initialization of statically defined mutexes. */ static int init_mutex_module(struct device *dev) { ARG_UNUSED(dev); Z_STRUCT_SECTION_FOREACH(k_mutex, mutex) { SYS_TRACING_OBJ_INIT(k_mutex, mutex); } return 0; } SYS_INIT(init_mutex_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ int z_impl_k_mutex_init(struct k_mutex *mutex) { mutex->owner = NULL; mutex->lock_count = 0U; sys_trace_void(SYS_TRACE_ID_MUTEX_INIT); z_waitq_init(&mutex->wait_q); SYS_TRACING_OBJ_INIT(k_mutex, mutex); z_object_init(mutex); sys_trace_end_call(SYS_TRACE_ID_MUTEX_INIT); return 0; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_mutex_init(struct k_mutex *mutex) { Z_OOPS(Z_SYSCALL_OBJ_INIT(mutex, K_OBJ_MUTEX)); return z_impl_k_mutex_init(mutex); } #include #endif static int32_t new_prio_for_inheritance(int32_t target, int32_t limit) { int new_prio = z_is_prio_higher(target, limit) ? target : limit; new_prio = z_get_new_prio_with_ceiling(new_prio); return new_prio; } static bool adjust_owner_prio(struct k_mutex *mutex, int32_t new_prio) { if (mutex->owner->base.prio != new_prio) { K_DEBUG("%p (ready (y/n): %c) prio changed to %d (was %d)\n", mutex->owner, z_is_thread_ready(mutex->owner) ? 'y' : 'n', new_prio, mutex->owner->base.prio); return z_set_prio(mutex->owner, new_prio); } return false; } int z_impl_k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout) { int new_prio; k_spinlock_key_t key; bool resched = false; __ASSERT(!arch_is_in_isr(), "mutexes cannot be used inside ISRs"); sys_trace_void(SYS_TRACE_ID_MUTEX_LOCK); key = k_spin_lock(&lock); if (likely((mutex->lock_count == 0U) || (mutex->owner == _current))) { mutex->owner_orig_prio = (mutex->lock_count == 0U) ? _current->base.prio : mutex->owner_orig_prio; mutex->lock_count++; mutex->owner = _current; K_DEBUG("%p took mutex %p, count: %d, orig prio: %d\n", _current, mutex, mutex->lock_count, mutex->owner_orig_prio); k_spin_unlock(&lock, key); sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK); return 0; } if (unlikely(K_TIMEOUT_EQ(timeout, K_NO_WAIT))) { k_spin_unlock(&lock, key); sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK); return -EBUSY; } new_prio = new_prio_for_inheritance(_current->base.prio, mutex->owner->base.prio); K_DEBUG("adjusting prio up on mutex %p\n", mutex); if (z_is_prio_higher(new_prio, mutex->owner->base.prio)) { resched = adjust_owner_prio(mutex, new_prio); } int got_mutex = z_pend_curr(&lock, key, &mutex->wait_q, timeout); K_DEBUG("on mutex %p got_mutex value: %d\n", mutex, got_mutex); K_DEBUG("%p got mutex %p (y/n): %c\n", _current, mutex, got_mutex ? 'y' : 'n'); if (got_mutex == 0) { sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK); return 0; } /* timed out */ K_DEBUG("%p timeout on mutex %p\n", _current, mutex); key = k_spin_lock(&lock); struct k_thread *waiter = z_waitq_head(&mutex->wait_q); new_prio = (waiter != NULL) ? new_prio_for_inheritance(waiter->base.prio, mutex->owner_orig_prio) : mutex->owner_orig_prio; K_DEBUG("adjusting prio down on mutex %p\n", mutex); resched = adjust_owner_prio(mutex, new_prio) || resched; if (resched) { z_reschedule(&lock, key); } else { k_spin_unlock(&lock, key); } sys_trace_end_call(SYS_TRACE_ID_MUTEX_LOCK); return -EAGAIN; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout) { Z_OOPS(Z_SYSCALL_OBJ(mutex, K_OBJ_MUTEX)); return z_impl_k_mutex_lock(mutex, timeout); } #include #endif int z_impl_k_mutex_unlock(struct k_mutex *mutex) { struct k_thread *new_owner; __ASSERT(!arch_is_in_isr(), "mutexes cannot be used inside ISRs"); CHECKIF(mutex->owner == NULL) { return -EINVAL; } /* * The current thread does not own the mutex. */ CHECKIF(mutex->owner != _current) { return -EPERM; } /* * Attempt to unlock a mutex which is unlocked. mutex->lock_count * cannot be zero if the current thread is equal to mutex->owner, * therefore no underflow check is required. Use assert to catch * undefined behavior. */ __ASSERT_NO_MSG(mutex->lock_count > 0U); sys_trace_void(SYS_TRACE_ID_MUTEX_UNLOCK); z_sched_lock(); K_DEBUG("mutex %p lock_count: %d\n", mutex, mutex->lock_count); /* * If we are the owner and count is greater than 1, then decrement * the count and return and keep current thread as the owner. */ if (mutex->lock_count - 1U != 0U) { mutex->lock_count--; goto k_mutex_unlock_return; } k_spinlock_key_t key = k_spin_lock(&lock); adjust_owner_prio(mutex, mutex->owner_orig_prio); /* Get the new owner, if any */ new_owner = z_unpend_first_thread(&mutex->wait_q); mutex->owner = new_owner; K_DEBUG("new owner of mutex %p: %p (prio: %d)\n", mutex, new_owner, new_owner ? new_owner->base.prio : -1000); if (new_owner != NULL) { /* * new owner is already of higher or equal prio than first * waiter since the wait queue is priority-based: no need to * ajust its priority */ mutex->owner_orig_prio = new_owner->base.prio; arch_thread_return_value_set(new_owner, 0); z_ready_thread(new_owner); z_reschedule(&lock, key); } else { mutex->lock_count = 0U; k_spin_unlock(&lock, key); } k_mutex_unlock_return: k_sched_unlock(); sys_trace_end_call(SYS_TRACE_ID_MUTEX_UNLOCK); return 0; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_k_mutex_unlock(struct k_mutex *mutex) { Z_OOPS(Z_SYSCALL_OBJ(mutex, K_OBJ_MUTEX)); return z_impl_k_mutex_unlock(mutex); } #include #endif