/* * Copyright (c) 2016 Linaro Limited. * Copyright (c) 2019 Song Qiang * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT st_stm32_dma /** * @brief Common part of DMA drivers for stm32. * @note Functions named with stm32_dma_* are SoCs related functions * implemented in dma_stm32_v*.c */ #include #include #include #include #include #include "dma_stm32.h" #include LOG_MODULE_REGISTER(dma_stm32, CONFIG_DMA_LOG_LEVEL); static u32_t table_m_size[] = { LL_DMA_MDATAALIGN_BYTE, LL_DMA_MDATAALIGN_HALFWORD, LL_DMA_MDATAALIGN_WORD, }; static u32_t table_p_size[] = { LL_DMA_PDATAALIGN_BYTE, LL_DMA_PDATAALIGN_HALFWORD, LL_DMA_PDATAALIGN_WORD, }; static void dma_stm32_dump_stream_irq(struct device *dev, u32_t id) { const struct dma_stm32_config *config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)(config->base); stm32_dma_dump_stream_irq(dma, id); } static void dma_stm32_clear_stream_irq(struct device *dev, u32_t id) { const struct dma_stm32_config *config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)(config->base); func_ll_clear_tc[id](dma); func_ll_clear_ht[id](dma); stm32_dma_clear_stream_irq(dma, id); } static void dma_stm32_irq_handler(void *arg) { struct device *dev = arg; struct dma_stm32_data *data = dev->driver_data; const struct dma_stm32_config *config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)(config->base); struct dma_stm32_stream *stream; int id; for (id = 0; id < data->max_streams; id++) { if (func_ll_is_active_tc[id](dma)) { break; } if (stm32_dma_is_irq_happened(dma, id)) { break; } } if (id == data->max_streams) { LOG_ERR("Unknown interrupt happened."); return; } stream = &data->streams[id]; stream->busy = false; /* the dma stream id is in range from STREAM_OFFSET.. */ if (func_ll_is_active_tc[id](dma)) { func_ll_clear_tc[id](dma); stream->dma_callback(stream->callback_arg, id + STREAM_OFFSET, 0); } else if (stm32_dma_is_unexpected_irq_happened(dma, id)) { LOG_ERR("Unexpected irq happened."); stream->dma_callback(stream->callback_arg, id + STREAM_OFFSET, -EIO); } else { LOG_ERR("Transfer Error."); dma_stm32_dump_stream_irq(dev, id); dma_stm32_clear_stream_irq(dev, id); stream->dma_callback(stream->callback_arg, id + STREAM_OFFSET, -EIO); } } static int dma_stm32_width_config(struct dma_config *config, bool source_periph, DMA_TypeDef *dma, LL_DMA_InitTypeDef *DMA_InitStruct, u32_t id) { u32_t periph, memory; u32_t m_size = 0, p_size = 0; if (source_periph) { periph = config->source_data_size; memory = config->dest_data_size; } else { periph = config->dest_data_size; memory = config->source_data_size; } int index = find_lsb_set(config->source_data_size) - 1; m_size = table_m_size[index]; index = find_lsb_set(config->dest_data_size) - 1; p_size = table_p_size[index]; DMA_InitStruct->PeriphOrM2MSrcDataSize = p_size; DMA_InitStruct->MemoryOrM2MDstDataSize = m_size; return 0; } static int dma_stm32_get_priority(u8_t priority, u32_t *ll_priority) { switch (priority) { case 0x0: *ll_priority = LL_DMA_PRIORITY_LOW; break; case 0x1: *ll_priority = LL_DMA_PRIORITY_MEDIUM; break; case 0x2: *ll_priority = LL_DMA_PRIORITY_HIGH; break; case 0x3: *ll_priority = LL_DMA_PRIORITY_VERYHIGH; break; default: LOG_ERR("Priority error. %d", priority); return -EINVAL; } return 0; } static int dma_stm32_get_direction(enum dma_channel_direction direction, u32_t *ll_direction) { switch (direction) { case MEMORY_TO_MEMORY: *ll_direction = LL_DMA_DIRECTION_MEMORY_TO_MEMORY; break; case MEMORY_TO_PERIPHERAL: *ll_direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH; break; case PERIPHERAL_TO_MEMORY: *ll_direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY; break; default: LOG_ERR("Direction error. %d", direction); return -EINVAL; } return 0; } static int dma_stm32_get_memory_increment(enum dma_addr_adj increment, u32_t *ll_increment) { switch (increment) { case DMA_ADDR_ADJ_INCREMENT: *ll_increment = LL_DMA_MEMORY_INCREMENT; break; case DMA_ADDR_ADJ_NO_CHANGE: *ll_increment = LL_DMA_MEMORY_NOINCREMENT; break; case DMA_ADDR_ADJ_DECREMENT: return -ENOTSUP; default: LOG_ERR("Memory increment error. %d", increment); return -EINVAL; } return 0; } static int dma_stm32_get_periph_increment(enum dma_addr_adj increment, u32_t *ll_increment) { switch (increment) { case DMA_ADDR_ADJ_INCREMENT: *ll_increment = LL_DMA_PERIPH_INCREMENT; break; case DMA_ADDR_ADJ_NO_CHANGE: *ll_increment = LL_DMA_PERIPH_NOINCREMENT; break; case DMA_ADDR_ADJ_DECREMENT: return -ENOTSUP; default: LOG_ERR("Periph increment error. %d", increment); return -EINVAL; } return 0; } static int dma_stm32_configure(struct device *dev, u32_t id, struct dma_config *config) { struct dma_stm32_data *data = dev->driver_data; struct dma_stm32_stream *stream = &data->streams[id - STREAM_OFFSET]; const struct dma_stm32_config *dev_config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)dev_config->base; LL_DMA_InitTypeDef DMA_InitStruct; u32_t msize; int ret; /* give channel from index 0 */ id = id - STREAM_OFFSET; if (id >= data->max_streams) { LOG_ERR("cannot configure the dma stream %d.", id); return -EINVAL; } if (stream->busy) { LOG_ERR("dma stream %d is busy.", id); return -EBUSY; } stm32_dma_disable_stream(dma, id); dma_stm32_clear_stream_irq(dev, id); if (config->head_block->block_size > DMA_STM32_MAX_DATA_ITEMS) { LOG_ERR("Data size too big: %d\n", config->head_block->block_size); return -EINVAL; } #ifdef CONFIG_DMA_STM32_V1 if ((stream->direction == MEMORY_TO_MEMORY) && (!dev_config->support_m2m)) { LOG_ERR("Memcopy not supported for device %s", dev->config->name); return -ENOTSUP; } #endif /* CONFIG_DMA_STM32_V1 */ if (config->source_data_size != 4U && config->source_data_size != 2U && config->source_data_size != 1U) { LOG_ERR("Source unit size error, %d", config->source_data_size); return -EINVAL; } if (config->dest_data_size != 4U && config->dest_data_size != 2U && config->dest_data_size != 1U) { LOG_ERR("Dest unit size error, %d", config->dest_data_size); return -EINVAL; } /* * STM32's circular mode will auto reset both source address * counter and destination address counter. */ if (config->head_block->source_reload_en != config->head_block->dest_reload_en) { LOG_ERR("source_reload_en and dest_reload_en must " "be the same."); return -EINVAL; } stream->busy = true; stream->dma_callback = config->dma_callback; stream->direction = config->channel_direction; stream->callback_arg = config->callback_arg; stream->src_size = config->source_data_size; stream->dst_size = config->dest_data_size; /* check dest or source memory address, warn if 0 */ if ((config->head_block->source_address == 0)) { LOG_WRN("source_buffer address is null."); } if ((config->head_block->dest_address == 0)) { LOG_WRN("dest_buffer address is null."); } if (stream->direction == MEMORY_TO_PERIPHERAL) { DMA_InitStruct.MemoryOrM2MDstAddress = config->head_block->source_address; DMA_InitStruct.PeriphOrM2MSrcAddress = config->head_block->dest_address; } else { DMA_InitStruct.PeriphOrM2MSrcAddress = config->head_block->source_address; DMA_InitStruct.MemoryOrM2MDstAddress = config->head_block->dest_address; } u16_t memory_addr_adj = 0, periph_addr_adj = 0; ret = dma_stm32_get_priority(config->channel_priority, &DMA_InitStruct.Priority); if (ret < 0) { return ret; } ret = dma_stm32_get_direction(config->channel_direction, &DMA_InitStruct.Direction); if (ret < 0) { return ret; } switch (config->channel_direction) { case MEMORY_TO_MEMORY: case PERIPHERAL_TO_MEMORY: memory_addr_adj = config->head_block->dest_addr_adj; periph_addr_adj = config->head_block->source_addr_adj; break; case MEMORY_TO_PERIPHERAL: memory_addr_adj = config->head_block->source_addr_adj; periph_addr_adj = config->head_block->dest_addr_adj; break; /* Direction has been asserted in dma_stm32_get_direction. */ default: LOG_ERR("Channel direction error (%d).", config->channel_direction); return -EINVAL; } ret = dma_stm32_get_memory_increment(memory_addr_adj, &DMA_InitStruct.MemoryOrM2MDstIncMode); if (ret < 0) { return ret; } ret = dma_stm32_get_periph_increment(periph_addr_adj, &DMA_InitStruct.PeriphOrM2MSrcIncMode); if (ret < 0) { return ret; } if (config->head_block->source_reload_en) { DMA_InitStruct.Mode = LL_DMA_MODE_CIRCULAR; } else { DMA_InitStruct.Mode = LL_DMA_MODE_NORMAL; } stream->source_periph = stream->direction == MEMORY_TO_PERIPHERAL; ret = dma_stm32_width_config(config, stream->source_periph, dma, &DMA_InitStruct, id); if (ret < 0) { return ret; } msize = DMA_InitStruct.MemoryOrM2MDstDataSize; #if defined(CONFIG_DMA_STM32_V1) DMA_InitStruct.MemBurst = stm32_dma_get_mburst(config, stream->source_periph); DMA_InitStruct.PeriphBurst = stm32_dma_get_pburst(config, stream->source_periph); if (config->channel_direction != MEMORY_TO_MEMORY) { if (config->dma_slot >= 8) { LOG_ERR("dma slot error."); return -EINVAL; } } else { if (config->dma_slot >= 8) { LOG_ERR("dma slot is too big, using 0 as default."); config->dma_slot = 0; } } DMA_InitStruct.Channel = table_ll_channel[config->dma_slot]; DMA_InitStruct.FIFOThreshold = stm32_dma_get_fifo_threshold( config->head_block->fifo_mode_control); if (stm32_dma_check_fifo_mburst(&DMA_InitStruct)) { DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_ENABLE; } else { DMA_InitStruct.FIFOMode = LL_DMA_FIFOMODE_DISABLE; } #endif if (stream->source_periph) { DMA_InitStruct.NbData = config->head_block->block_size / config->source_data_size; } else { DMA_InitStruct.NbData = config->head_block->block_size / config->dest_data_size; } #if defined(CONFIG_DMA_STM32_V2) /* * the with dma V2, * the request ID is stored in the dma_slot */ DMA_InitStruct.PeriphRequest = config->dma_slot; #endif LL_DMA_Init(dma, table_ll_stream[id], &DMA_InitStruct); LL_DMA_EnableIT_TC(dma, table_ll_stream[id]); /* Half-Transfer irq is not handled */ #if defined(CONFIG_DMA_STM32_V1) if (DMA_InitStruct.FIFOMode == LL_DMA_FIFOMODE_ENABLE) { LL_DMA_EnableFifoMode(dma, table_ll_stream[id]); LL_DMA_EnableIT_FE(dma, table_ll_stream[id]); } else { LL_DMA_DisableFifoMode(dma, table_ll_stream[id]); LL_DMA_DisableIT_FE(dma, table_ll_stream[id]); } #endif return ret; } static int dma_stm32_disable_stream(DMA_TypeDef *dma, u32_t id) { int count = 0; for (;;) { if (!stm32_dma_disable_stream(dma, id)) { return 0; } /* After trying for 5 seconds, give up */ if (count++ > (5 * 1000)) { return -EBUSY; } k_sleep(K_MSEC(1)); } return 0; } static int dma_stm32_reload(struct device *dev, u32_t id, u32_t src, u32_t dst, size_t size) { const struct dma_stm32_config *config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)(config->base); struct dma_stm32_data *data = dev->driver_data; struct dma_stm32_stream *stream = &data->streams[id - STREAM_OFFSET]; /* give channel from index 0 */ id = id - STREAM_OFFSET; if (id >= data->max_streams) { return -EINVAL; } switch (stream->direction) { case MEMORY_TO_PERIPHERAL: LL_DMA_SetMemoryAddress(dma, table_ll_stream[id], src); LL_DMA_SetPeriphAddress(dma, table_ll_stream[id], dst); break; case MEMORY_TO_MEMORY: case PERIPHERAL_TO_MEMORY: LL_DMA_SetPeriphAddress(dma, table_ll_stream[id], src); LL_DMA_SetMemoryAddress(dma, table_ll_stream[id], dst); break; default: return -EINVAL; } if (stream->source_periph) { LL_DMA_SetDataLength(dma, table_ll_stream[id], size / stream->src_size); } else { LL_DMA_SetDataLength(dma, table_ll_stream[id], size / stream->dst_size); } return 0; } static int dma_stm32_start(struct device *dev, u32_t id) { const struct dma_stm32_config *config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)(config->base); struct dma_stm32_data *data = dev->driver_data; /* give channel from index 0 */ id = id - STREAM_OFFSET; /* Only M2P or M2M mode can be started manually. */ if (id >= data->max_streams) { return -EINVAL; } dma_stm32_clear_stream_irq(dev, id); stm32_dma_enable_stream(dma, id); return 0; } static int dma_stm32_stop(struct device *dev, u32_t id) { struct dma_stm32_data *data = dev->driver_data; struct dma_stm32_stream *stream = &data->streams[id - STREAM_OFFSET]; const struct dma_stm32_config *config = dev->config->config_info; DMA_TypeDef *dma = (DMA_TypeDef *)(config->base); /* give channel from index 0 */ id = id - STREAM_OFFSET; if (id >= data->max_streams) { return -EINVAL; } LL_DMA_DisableIT_TC(dma, table_ll_stream[id]); #if defined(CONFIG_DMA_STM32_V1) stm32_dma_disable_fifo_irq(dma, id); #endif dma_stm32_disable_stream(dma, id); dma_stm32_clear_stream_irq(dev, id); /* Finally, flag stream as free */ stream->busy = false; return 0; } struct k_mem_block block; static int dma_stm32_init(struct device *dev) { struct dma_stm32_data *data = dev->driver_data; const struct dma_stm32_config *config = dev->config->config_info; struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME); if (clock_control_on(clk, (clock_control_subsys_t *) &config->pclken) != 0) { LOG_ERR("clock op failed\n"); return -EIO; } config->config_irq(dev); int size_stream = sizeof(struct dma_stm32_stream) * data->max_streams; data->streams = k_malloc(size_stream); if (!data->streams) { LOG_ERR("HEAP_MEM_POOL_SIZE is too small"); return -ENOMEM; } memset(data->streams, 0, size_stream); for (int i = 0; i < data->max_streams; i++) { data->streams[i].busy = false; } return 0; } static const struct dma_driver_api dma_funcs = { .reload = dma_stm32_reload, .config = dma_stm32_configure, .start = dma_stm32_start, .stop = dma_stm32_stop, }; #define DMA_INIT(index) \ static void dma_stm32_config_irq_##index(struct device *dev); \ \ const struct dma_stm32_config dma_stm32_config_##index = { \ .pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \ .enr = DT_INST_CLOCKS_CELL(index, bits) }, \ .config_irq = dma_stm32_config_irq_##index, \ .base = DT_INST_REG_ADDR(index), \ .support_m2m = DT_INST_PROP(index, st_mem2mem), \ }; \ \ static struct dma_stm32_data dma_stm32_data_##index = { \ .max_streams = 0, \ .streams = NULL, \ }; \ \ DEVICE_AND_API_INIT(dma_##index, DT_INST_LABEL(index), \ &dma_stm32_init, \ &dma_stm32_data_##index, &dma_stm32_config_##index, \ POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, \ &dma_funcs) #define irq_func(chan) \ static void dma_stm32_irq_##chan(void *arg) \ { \ dma_stm32_irq_handler(arg, chan); \ } #define IRQ_INIT(dma, chan) \ do { \ if (!irq_is_enabled(DT_INST_IRQ_BY_IDX(dma, chan, irq))) { \ irq_connect_dynamic(DT_INST_IRQ_BY_IDX(dma, chan, irq), \ DT_INST_IRQ_BY_IDX(dma, chan, priority), \ dma_stm32_irq_handler, dev, 0); \ irq_enable(DT_INST_IRQ_BY_IDX(dma, chan, irq)); \ } \ data->max_streams++; \ } while (0) #if DT_HAS_DRV_INST(0) DMA_INIT(0); static void dma_stm32_config_irq_0(struct device *dev) { struct dma_stm32_data *data = dev->driver_data; IRQ_INIT(0, 0); IRQ_INIT(0, 1); IRQ_INIT(0, 2); IRQ_INIT(0, 3); IRQ_INIT(0, 4); #if DT_INST_IRQ_HAS_IDX(0, 5) IRQ_INIT(0, 5); #if DT_INST_IRQ_HAS_IDX(0, 6) IRQ_INIT(0, 6); #if DT_INST_IRQ_HAS_IDX(0, 7) IRQ_INIT(0, 7); #endif /* DT_INST_IRQ_HAS_IDX(0, 5) */ #endif /* DT_INST_IRQ_HAS_IDX(0, 6) */ #endif /* DT_INST_IRQ_HAS_IDX(0, 7) */ /* Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series. */ } #endif /* DT_HAS_DRV_INST(0) */ #if DT_HAS_DRV_INST(1) DMA_INIT(1); static void dma_stm32_config_irq_1(struct device *dev) { struct dma_stm32_data *data = dev->driver_data; IRQ_INIT(1, 0); IRQ_INIT(1, 1); IRQ_INIT(1, 2); IRQ_INIT(1, 3); IRQ_INIT(1, 4); #if DT_INST_IRQ_HAS_IDX(1, 5) IRQ_INIT(1, 5); #if DT_INST_IRQ_HAS_IDX(1, 6) IRQ_INIT(1, 6); #if DT_INST_IRQ_HAS_IDX(1, 7) IRQ_INIT(1, 7); #endif /* DT_INST_IRQ_HAS_IDX(1, 5) */ #endif /* DT_INST_IRQ_HAS_IDX(1, 6) */ #endif /* DT_INST_IRQ_HAS_IDX(1, 7) */ /* Either 5 or 6 or 7 or 8 channels for DMA across all stm32 series. */ } #endif /* DT_HAS_DRV_INST(1) */