/* * Copyright 2022,2024 NXP * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include "sd_utils.h" LOG_MODULE_DECLARE(sd, CONFIG_SD_LOG_LEVEL); /* Read card status. Return 0 if card is inactive */ int sdmmc_read_status(struct sd_card *card) { struct sdhc_command cmd; int ret; cmd.opcode = SD_SEND_STATUS; cmd.arg = 0; if (!card->host_props.is_spi) { cmd.arg = (card->relative_addr << 16U); } cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R2); cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { return SD_RETRY; } if (card->host_props.is_spi) { /* Check R2 response bits */ if ((cmd.response[0U] & SDHC_SPI_R2_CARD_LOCKED) || (cmd.response[0U] & SDHC_SPI_R2_UNLOCK_FAIL)) { return -EACCES; } else if ((cmd.response[0U] & SDHC_SPI_R2_WP_VIOLATION) || (cmd.response[0U] & SDHC_SPI_R2_ERASE_PARAM) || (cmd.response[0U] & SDHC_SPI_R2_OUT_OF_RANGE)) { return -EINVAL; } else if ((cmd.response[0U] & SDHC_SPI_R2_ERR) || (cmd.response[0U] & SDHC_SPI_R2_CC_ERR) || (cmd.response[0U] & SDHC_SPI_R2_ECC_FAIL)) { return -EIO; } /* Otherwise, no error in R2 response */ return 0; } /* Otherwise, check native card response */ if ((cmd.response[0U] & SD_R1_RDY_DATA) && (SD_R1_CURRENT_STATE(cmd.response[0U]) == SDMMC_R1_TRANSFER)) { return 0; } /* Valid response, the card is busy */ return -EBUSY; } /* Waits for SD card to be ready for data. Returns 0 if card is ready */ int sdmmc_wait_ready(struct sd_card *card) { int ret, timeout = CONFIG_SD_DATA_TIMEOUT * 1000; do { if (!sdhc_card_busy(card->sdhc)) { /* Check card status */ ret = sd_retry(sdmmc_read_status, card, CONFIG_SD_RETRY_COUNT); if (ret == 0) { return 0; } if (ret == -ETIMEDOUT) { /* If this check timed out, then the total * time elapsed in microseconds is * SD_CMD_TIMEOUT * SD_RETRY_COUNT * 1000 */ timeout -= (CONFIG_SD_CMD_TIMEOUT * CONFIG_SD_RETRY_COUNT) * 1000; } } /* Delay 125us before polling again */ k_busy_wait(125); timeout -= 125; } while (timeout > 0); return -EBUSY; } static inline void sdmmc_decode_csd(struct sd_csd *csd, uint32_t *raw_csd, uint32_t *blk_count, uint16_t *blk_size) { uint32_t tmp_blk_count; uint16_t tmp_blk_size; csd->csd_structure = (uint8_t)((raw_csd[3U] & 0xC0000000U) >> 30U); csd->read_time1 = (uint8_t)((raw_csd[3U] & 0xFF0000U) >> 16U); csd->read_time2 = (uint8_t)((raw_csd[3U] & 0xFF00U) >> 8U); csd->xfer_rate = (uint8_t)(raw_csd[3U] & 0xFFU); csd->cmd_class = (uint16_t)((raw_csd[2U] & 0xFFF00000U) >> 20U); csd->read_blk_len = (uint8_t)((raw_csd[2U] & 0xF0000U) >> 16U); if (raw_csd[2U] & 0x8000U) { csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG; } if (raw_csd[2U] & 0x4000U) { csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG; } if (raw_csd[2U] & 0x2000U) { csd->flags |= SD_CSD_READ_BLK_MISALIGN_FLAG; } if (raw_csd[2U] & 0x1000U) { csd->flags |= SD_CSD_DSR_IMPLEMENTED_FLAG; } switch (csd->csd_structure) { case 0: csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FFU) << 2U); csd->device_size |= (uint32_t)((raw_csd[1U] & 0xC0000000U) >> 30U); csd->read_current_min = (uint8_t)((raw_csd[1U] & 0x38000000U) >> 27U); csd->read_current_max = (uint8_t)((raw_csd[1U] & 0x7000000U) >> 24U); csd->write_current_min = (uint8_t)((raw_csd[1U] & 0xE00000U) >> 20U); csd->write_current_max = (uint8_t)((raw_csd[1U] & 0x1C0000U) >> 18U); csd->dev_size_mul = (uint8_t)((raw_csd[1U] & 0x38000U) >> 15U); /* Get card total block count and block size. */ tmp_blk_count = ((csd->device_size + 1U) << (csd->dev_size_mul + 2U)); tmp_blk_size = (1U << (csd->read_blk_len)); if (tmp_blk_size != SDMMC_DEFAULT_BLOCK_SIZE) { tmp_blk_count = (tmp_blk_count * tmp_blk_size); tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE; tmp_blk_count = (tmp_blk_count / tmp_blk_size); } if (blk_count) { *blk_count = tmp_blk_count; } if (blk_size) { *blk_size = tmp_blk_size; } break; case 1: tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE; csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FU) << 16U); csd->device_size |= (uint32_t)((raw_csd[1U] & 0xFFFF0000U) >> 16U); tmp_blk_count = ((csd->device_size + 1U) * 1024U); if (blk_count) { *blk_count = tmp_blk_count; } if (blk_size) { *blk_size = tmp_blk_size; } break; default: break; } if ((uint8_t)((raw_csd[1U] & 0x4000U) >> 14U)) { csd->flags |= SD_CSD_ERASE_BLK_EN_FLAG; } csd->erase_size = (uint8_t)((raw_csd[1U] & 0x3F80U) >> 7U); csd->write_prtect_size = (uint8_t)(raw_csd[1U] & 0x7FU); csd->write_speed_factor = (uint8_t)((raw_csd[0U] & 0x1C000000U) >> 26U); csd->write_blk_len = (uint8_t)((raw_csd[0U] & 0x3C00000U) >> 22U); if ((uint8_t)((raw_csd[0U] & 0x200000U) >> 21U)) { csd->flags |= SD_CSD_WRITE_BLK_PARTIAL_FLAG; } if ((uint8_t)((raw_csd[0U] & 0x8000U) >> 15U)) { csd->flags |= SD_CSD_FILE_FMT_GRP_FLAG; } if ((uint8_t)((raw_csd[0U] & 0x4000U) >> 14U)) { csd->flags |= SD_CSD_COPY_FLAG; } if ((uint8_t)((raw_csd[0U] & 0x2000U) >> 13U)) { csd->flags |= SD_CSD_PERMANENT_WRITE_PROTECT_FLAG; } if ((uint8_t)((raw_csd[0U] & 0x1000U) >> 12U)) { csd->flags |= SD_CSD_TMP_WRITE_PROTECT_FLAG; } csd->file_fmt = (uint8_t)((raw_csd[0U] & 0xC00U) >> 10U); } static inline void sdmmc_decode_cid(struct sd_cid *cid, uint32_t *raw_cid) { cid->manufacturer = (uint8_t)((raw_cid[3U] & 0xFF000000U) >> 24U); cid->application = (uint16_t)((raw_cid[3U] & 0xFFFF00U) >> 8U); cid->name[0U] = (uint8_t)((raw_cid[3U] & 0xFFU)); cid->name[1U] = (uint8_t)((raw_cid[2U] & 0xFF000000U) >> 24U); cid->name[2U] = (uint8_t)((raw_cid[2U] & 0xFF0000U) >> 16U); cid->name[3U] = (uint8_t)((raw_cid[2U] & 0xFF00U) >> 8U); cid->name[4U] = (uint8_t)((raw_cid[2U] & 0xFFU)); cid->version = (uint8_t)((raw_cid[1U] & 0xFF000000U) >> 24U); cid->ser_num = (uint32_t)((raw_cid[1U] & 0xFFFFFFU) << 8U); cid->ser_num |= (uint32_t)((raw_cid[0U] & 0xFF000000U) >> 24U); cid->date = (uint16_t)((raw_cid[0U] & 0xFFF00U) >> 8U); } /* Reads card id/csd register (in SPI mode) */ static int sdmmc_spi_read_cxd(struct sd_card *card, uint32_t opcode, uint32_t *cxd) { struct sdhc_command cmd; struct sdhc_data data; int ret, i; /* Use internal card buffer for data transfer */ uint32_t *cxd_be = (uint32_t *)card->card_buffer; cmd.opcode = opcode; cmd.arg = 0; cmd.response_type = SD_SPI_RSP_TYPE_R1; cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; /* CID/CSD is 16 bytes */ data.block_addr = 0; /* Unused set to 0 */ data.block_size = 16; data.blocks = 1U; data.data = cxd_be; data.timeout_ms = CONFIG_SD_CMD_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, &data); if (ret) { LOG_DBG("CMD%d failed: %d", opcode, ret); } /* Swap endianness of CXD */ for (i = 0; i < 4; i++) { cxd[3 - i] = sys_be32_to_cpu(cxd_be[i]); } return 0; } /* Reads card id/csd register (native SD mode */ static int sdmmc_read_cxd(struct sd_card *card, uint32_t opcode, uint32_t rca, uint32_t *cxd) { struct sdhc_command cmd; int ret; cmd.opcode = opcode; cmd.arg = (rca << 16); cmd.response_type = SD_RSP_TYPE_R2; cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { LOG_DBG("CMD%d failed: %d", opcode, ret); return ret; } /* CSD/CID is 16 bytes */ memcpy(cxd, cmd.response, 16); return 0; } /* Read card specific data register */ int sdmmc_read_csd(struct sd_card *card) { int ret; uint32_t csd[4]; /* Keep CSD on stack for reduced RAM usage */ struct sd_csd card_csd = {0}; if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) { ret = sdmmc_spi_read_cxd(card, SD_SEND_CSD, csd); } else if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { ret = sdmmc_read_cxd(card, SD_SEND_CSD, card->relative_addr, csd); } else { /* The host controller must run in either native or SPI mode */ return -ENOTSUP; } if (ret) { return ret; } sdmmc_decode_csd(&card_csd, csd, &card->block_count, &card->block_size); LOG_DBG("Card block count %d, block size %d", card->block_count, card->block_size); return 0; } /* Reads card identification register, and decodes it */ int card_read_cid(struct sd_card *card) { uint32_t cid[4]; int ret; #if defined(CONFIG_SDMMC_STACK) || defined(CONFIG_SDIO_STACK) /* Keep CID on stack for reduced RAM usage */ struct sd_cid card_cid = {0}; #endif if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) { ret = sdmmc_spi_read_cxd(card, SD_SEND_CID, cid); } else if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { ret = sdmmc_read_cxd(card, SD_ALL_SEND_CID, 0, cid); } else { /* The host controller must run in either native or SPI mode */ return -ENOTSUP; } if (ret) { return ret; } #if defined(CONFIG_MMC_STACK) if (card->type == CARD_MMC) { LOG_INF("CID decoding not supported for MMC"); return 0; } #endif #if defined(CONFIG_SDMMC_STACK) || defined(CONFIG_SDIO_STACK) /* Decode SD CID */ sdmmc_decode_cid(&card_cid, cid); LOG_DBG("Card MID: 0x%x, OID: %c%c", card_cid.manufacturer, ((char *)&card_cid.application)[0], ((char *)&card_cid.application)[1]); #endif return 0; } /* * Implements signal voltage switch procedure described in section 3.6.1 of * SD host controller specification. */ int sdmmc_switch_voltage(struct sd_card *card) { int ret, sd_clock; struct sdhc_command cmd; /* Check to make sure card supports 1.8V */ if (!(card->flags & SD_1800MV_FLAG)) { /* Do not attempt to switch voltages */ LOG_WRN("SD card reports as SDHC/SDXC, but does not support 1.8V"); return 0; } /* Send CMD11 to request a voltage switch */ cmd.opcode = SD_VOL_SWITCH; cmd.arg = 0U; cmd.response_type = SD_RSP_TYPE_R1; cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { LOG_DBG("CMD11 failed"); return ret; } /* Check R1 response for error */ ret = sd_check_response(&cmd); if (ret) { LOG_DBG("SD response to CMD11 indicates error"); return ret; } /* * Card should drive CMD and DAT[3:0] signals low at the next clock * cycle. Some cards will only drive these * lines low briefly, so we should check as soon as possible */ if (!(sdhc_card_busy(card->sdhc))) { /* Delay 1ms to allow card to drive lines low */ sd_delay(1); if (!sdhc_card_busy(card->sdhc)) { /* Card did not drive CMD and DAT lines low */ LOG_DBG("Card did not drive DAT lines low"); return -EAGAIN; } } /* * Per SD spec (section "Timing to Switch Signal Voltage"), * host must gate clock at least 5ms. */ sd_clock = card->bus_io.clock; card->bus_io.clock = 0; ret = sdhc_set_io(card->sdhc, &card->bus_io); if (ret) { LOG_DBG("Failed to gate SD clock"); return ret; } /* Now that clock is gated, change signal voltage */ card->bus_io.signal_voltage = SD_VOL_1_8_V; ret = sdhc_set_io(card->sdhc, &card->bus_io); if (ret) { LOG_DBG("Failed to switch SD host to 1.8V"); return ret; } sd_delay(10); /* Gate for 10ms, even though spec requires 5 */ /* Restart the clock */ card->bus_io.clock = sd_clock; ret = sdhc_set_io(card->sdhc, &card->bus_io); if (ret) { LOG_ERR("Failed to restart SD clock"); return ret; } /* * If SD does not drive at least one of * DAT[3:0] high within 1ms, switch failed */ sd_delay(1); if (sdhc_card_busy(card->sdhc)) { LOG_DBG("Card failed to switch voltages"); return -EAGAIN; } card->card_voltage = SD_VOL_1_8_V; LOG_INF("Card switched to 1.8V signaling"); return 0; } /* * Requests card to publish a new relative card address, and move from * identification to data mode */ int sdmmc_request_rca(struct sd_card *card) { struct sdhc_command cmd; int ret; cmd.opcode = SD_SEND_RELATIVE_ADDR; cmd.arg = 0; cmd.response_type = SD_RSP_TYPE_R6; cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; /* Issue CMD3 until card responds with nonzero RCA */ do { ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { LOG_DBG("CMD3 failed"); return ret; } /* Card RCA is in upper 16 bits of response */ card->relative_addr = ((cmd.response[0U] & 0xFFFF0000) >> 16U); } while (card->relative_addr == 0U); LOG_DBG("Card relative addr: %d", card->relative_addr); return 0; } /* * Selects card, moving it into data transfer mode */ int sdmmc_select_card(struct sd_card *card) { struct sdhc_command cmd; int ret; cmd.opcode = SD_SELECT_CARD; cmd.arg = ((card->relative_addr) << 16U); cmd.response_type = SD_RSP_TYPE_R1; cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { LOG_DBG("CMD7 failed"); return ret; } ret = sd_check_response(&cmd); if (ret) { LOG_DBG("CMD7 reports error"); return ret; } return 0; } /* Helper to send SD app command */ int card_app_command(struct sd_card *card, int relative_card_address) { struct sdhc_command cmd; int ret; cmd.opcode = SD_APP_CMD; cmd.arg = relative_card_address << 16U; cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { /* We want to retry transmission */ return SD_RETRY; } ret = sd_check_response(&cmd); if (ret) { LOG_WRN("SD app command failed with R1 response of 0x%X", cmd.response[0]); return -EIO; } /* Check application command flag to determine if card is ready for APP CMD */ if ((!card->host_props.is_spi) && !(cmd.response[0U] & SD_R1_APP_CMD)) { /* Command succeeded, but card not ready for app command. No APP CMD support */ return -ENOTSUP; } return 0; } static int card_read(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks) { int ret; struct sdhc_command cmd; struct sdhc_data data; /* * Note: The SD specification allows for CMD23 to be sent before a * transfer in order to set the block length (often preferable). * The specification also requires that CMD12 be sent to stop a transfer. * However, the host specification defines support for "Auto CMD23" and * "Auto CMD12", where the host sends CMD23 and CMD12 automatically to * remove the overhead of interrupts in software from sending these * commands. Therefore, we will not handle CMD12 or CMD23 at this layer. * The host SDHC driver is expected to recognize CMD17, CMD18, CMD24, * and CMD25 as special read/write commands and handle CMD23 and * CMD12 appropriately. */ cmd.opcode = (num_blocks == 1U) ? SD_READ_SINGLE_BLOCK : SD_READ_MULTIPLE_BLOCK; if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) { /* SDSC cards require block size in bytes, not blocks */ cmd.arg = start_block * card->block_size; } else { cmd.arg = start_block; } cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); cmd.retries = CONFIG_SD_DATA_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; data.block_addr = start_block; data.block_size = card->block_size; data.blocks = num_blocks; data.data = rbuf; data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; LOG_DBG("READ: Sector = %u, Count = %u", start_block, num_blocks); ret = sdhc_request(card->sdhc, &cmd, &data); if (ret) { LOG_ERR("Failed to read from SDMMC %d", ret); return ret; } /* Verify card is back in transfer state after read */ ret = sdmmc_wait_ready(card); if (ret) { LOG_ERR("Card did not return to ready state"); return -ETIMEDOUT; } return 0; } /* Reads data from SD card memory card */ int card_read_blocks(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks) { int ret; uint32_t rlen; uint32_t sector; uint8_t *buf_offset; if ((start_block + num_blocks) > card->block_count) { return -EINVAL; } if (card->type == CARD_SDIO) { LOG_WRN("SDIO does not support MMC commands"); return -ENOTSUP; } ret = k_mutex_lock(&card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT)); if (ret) { LOG_WRN("Could not get SD card mutex"); return -EBUSY; } /* * If the buffer we are provided with is aligned, we can use it * directly. Otherwise, we need to use the card's internal buffer * and memcpy the data back out */ if ((((uintptr_t)rbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) { /* lower bits of address are set, not aligned. Use internal buffer */ LOG_DBG("Unaligned buffer access to SD card may incur performance penalty"); if (sizeof(card->card_buffer) < card->block_size) { LOG_ERR("Card buffer size needs to be increased for " "unaligned writes to work"); k_mutex_unlock(&card->lock); return -ENOBUFS; } rlen = sizeof(card->card_buffer) / card->block_size; sector = 0; buf_offset = rbuf; while (sector < num_blocks) { /* Read from disk to card buffer */ ret = card_read(card, card->card_buffer, sector + start_block, rlen); if (ret) { LOG_ERR("Write failed"); k_mutex_unlock(&card->lock); return ret; } /* Copy data from card buffer */ memcpy(buf_offset, card->card_buffer, rlen * card->block_size); /* Increase sector count and buffer offset */ sector += rlen; buf_offset += rlen * card->block_size; } } else { /* Aligned buffers can be used directly */ ret = card_read(card, rbuf, start_block, num_blocks); if (ret) { LOG_ERR("Card read failed"); k_mutex_unlock(&card->lock); return ret; } } k_mutex_unlock(&card->lock); return 0; } /* * Sends ACMD22 (number of written blocks) to see how many blocks were written * to a card */ static int card_query_written(struct sd_card *card, uint32_t *num_written) { int ret; struct sdhc_command cmd; struct sdhc_data data; uint32_t *blocks = (uint32_t *)card->card_buffer; ret = card_app_command(card, card->relative_addr); if (ret) { LOG_DBG("App CMD for ACMD22 failed"); return ret; } cmd.opcode = SD_APP_SEND_NUM_WRITTEN_BLK; cmd.arg = 0; cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); cmd.retries = CONFIG_SD_CMD_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; data.block_addr = 0; /* Unused set to 0 */ data.block_size = 4U; data.blocks = 1U; data.data = blocks; data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, &data); if (ret) { LOG_DBG("ACMD22 failed: %d", ret); return ret; } ret = sd_check_response(&cmd); if (ret) { LOG_DBG("ACMD22 reports error"); return ret; } /* Decode blocks */ *num_written = sys_be32_to_cpu(blocks[0]); return 0; } static int card_write(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block, uint32_t num_blocks) { int ret; uint32_t blocks; struct sdhc_command cmd; struct sdhc_data data; /* * See the note in card_read() above. We will not issue CMD23 * or CMD12, and expect the host to handle those details. */ cmd.opcode = (num_blocks == 1) ? SD_WRITE_SINGLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK; if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) { /* SDSC cards require block size in bytes, not blocks */ cmd.arg = start_block * card->block_size; } else { cmd.arg = start_block; } cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); cmd.retries = CONFIG_SD_DATA_RETRIES; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; data.block_addr = start_block; data.block_size = card->block_size; data.blocks = num_blocks; data.data = (uint8_t *)wbuf; data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; LOG_DBG("WRITE: Sector = %u, Count = %u", start_block, num_blocks); ret = sdhc_request(card->sdhc, &cmd, &data); if (ret) { LOG_DBG("Write failed: %d", ret); ret = sdmmc_wait_ready(card); if (ret) { return ret; } /* Query card to see how many blocks were actually written */ ret = card_query_written(card, &blocks); if (ret) { return ret; } LOG_ERR("Only %d blocks of %d were written", blocks, num_blocks); return -EIO; } /* Verify card is back in transfer state after write */ ret = sdmmc_wait_ready(card); if (ret) { LOG_ERR("Card did not return to ready state"); return -ETIMEDOUT; } return 0; } /* Writes data to SD card memory card */ int card_write_blocks(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block, uint32_t num_blocks) { int ret; uint32_t wlen; uint32_t sector; const uint8_t *buf_offset; if ((start_block + num_blocks) > card->block_count) { return -EINVAL; } if (card->type == CARD_SDIO) { LOG_WRN("SDIO does not support MMC commands"); return -ENOTSUP; } ret = k_mutex_lock(&card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT)); if (ret) { LOG_WRN("Could not get SD card mutex"); return -EBUSY; } /* * If the buffer we are provided with is aligned, we can use it * directly. Otherwise, we need to use the card's internal buffer * and memcpy the data back out */ if ((((uintptr_t)wbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) { /* lower bits of address are set, not aligned. Use internal buffer */ LOG_DBG("Unaligned buffer access to SD card may incur performance penalty"); if (sizeof(card->card_buffer) < card->block_size) { LOG_ERR("Card buffer size needs to be increased for " "unaligned writes to work"); k_mutex_unlock(&card->lock); return -ENOBUFS; } wlen = sizeof(card->card_buffer) / card->block_size; sector = 0; buf_offset = wbuf; while (sector < num_blocks) { /* Copy data into card buffer */ memcpy(card->card_buffer, buf_offset, wlen * card->block_size); /* Write card buffer to disk */ ret = card_write(card, card->card_buffer, sector + start_block, wlen); if (ret) { LOG_ERR("Write failed"); k_mutex_unlock(&card->lock); return ret; } /* Increase sector count and buffer offset */ sector += wlen; buf_offset += wlen * card->block_size; } } else { /* We can use aligned buffers directly */ ret = card_write(card, wbuf, start_block, num_blocks); if (ret) { LOG_ERR("Write failed"); k_mutex_unlock(&card->lock); return ret; } } k_mutex_unlock(&card->lock); return 0; } /* IO Control handler for SD MMC */ int card_ioctl(struct sd_card *card, uint8_t cmd, void *buf) { int ret; ret = k_mutex_lock(&card->lock, K_MSEC(CONFIG_SD_DATA_TIMEOUT)); if (ret) { LOG_WRN("Could not get SD card mutex"); return ret; } switch (cmd) { case DISK_IOCTL_GET_SECTOR_COUNT: (*(uint32_t *)buf) = card->block_count; break; case DISK_IOCTL_GET_SECTOR_SIZE: case DISK_IOCTL_GET_ERASE_BLOCK_SZ: (*(uint32_t *)buf) = card->block_size; break; case DISK_IOCTL_CTRL_SYNC: /* Ensure card is not busy with data write. * Note that SD stack does not support enabling caching, so * cache flush is not required here */ ret = sdmmc_wait_ready(card); break; case DISK_IOCTL_CTRL_DEINIT: /* Ensure card is not busy with data write */ ret = sdmmc_wait_ready(card); if (ret < 0) { LOG_WRN("Card busy when powering off"); } /* Power down the card */ card->bus_io.power_mode = SDHC_POWER_OFF; ret = sdhc_set_io(card->sdhc, &card->bus_io); break; default: ret = -ENOTSUP; } k_mutex_unlock(&card->lock); return ret; }