/* * Copyright (c) 2020 PHYTEC Messtechnik GmbH * Copyright (c) 2021 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ /* * This file is based on mb.c and mb_util.c from uC/Modbus Stack. * * uC/Modbus * The Embedded Modbus Stack * * Copyright 2003-2020 Silicon Laboratories Inc. www.silabs.com * * SPDX-License-Identifier: APACHE-2.0 * * This software is subject to an open source license and is distributed by * Silicon Laboratories Inc. pursuant to the terms of the Apache License, * Version 2.0 available at www.apache.org/licenses/LICENSE-2.0. */ #include LOG_MODULE_REGISTER(modbus_serial, CONFIG_MODBUS_LOG_LEVEL); #include #include #include #include #include static void modbus_serial_tx_on(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; if (cfg->de != NULL) { gpio_pin_set(cfg->de->port, cfg->de->pin, 1); } uart_irq_tx_enable(cfg->dev); } static void modbus_serial_tx_off(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; uart_irq_tx_disable(cfg->dev); if (cfg->de != NULL) { gpio_pin_set(cfg->de->port, cfg->de->pin, 0); } } static void modbus_serial_rx_on(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; if (cfg->re != NULL) { gpio_pin_set(cfg->re->port, cfg->re->pin, 1); } uart_irq_rx_enable(cfg->dev); } static void modbus_serial_rx_off(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; uart_irq_rx_disable(cfg->dev); if (cfg->re != NULL) { gpio_pin_set(cfg->re->port, cfg->re->pin, 0); } } #ifdef CONFIG_MODBUS_ASCII_MODE /* The function calculates an 8-bit Longitudinal Redundancy Check. */ static uint8_t modbus_ascii_get_lrc(uint8_t *src, size_t length) { uint8_t lrc = 0; uint8_t tmp; uint8_t *pblock = src; while (length-- > 0) { /* Add the data byte to LRC, increment data pointer. */ if (hex2bin(pblock, 2, &tmp, sizeof(tmp)) != sizeof(tmp)) { return 0; } lrc += tmp; pblock += 2; } /* Two complement the binary sum */ lrc = ~lrc + 1; return lrc; } /* Parses and converts an ASCII mode frame into a Modbus RTU frame. */ static int modbus_ascii_rx_adu(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; uint8_t *pmsg; uint8_t *prx_data; uint16_t rx_size; uint8_t frame_lrc; uint8_t calc_lrc; rx_size = cfg->uart_buf_ctr; prx_data = &ctx->rx_adu.data[0]; if (!(rx_size & 0x01)) { LOG_WRN("Message should have an odd number of bytes"); return -EMSGSIZE; } if (rx_size < MODBUS_ASCII_MIN_MSG_SIZE) { LOG_WRN("Frame length error"); return -EMSGSIZE; } if ((cfg->uart_buf[0] != MODBUS_ASCII_START_FRAME_CHAR) || (cfg->uart_buf[rx_size - 2] != MODBUS_ASCII_END_FRAME_CHAR1) || (cfg->uart_buf[rx_size - 1] != MODBUS_ASCII_END_FRAME_CHAR2)) { LOG_WRN("Frame character error"); return -EMSGSIZE; } /* Take away for the ':', CR, and LF */ rx_size -= 3; /* Point past the ':' to the address. */ pmsg = &cfg->uart_buf[1]; hex2bin(pmsg, 2, &ctx->rx_adu.unit_id, 1); pmsg += 2; rx_size -= 2; hex2bin(pmsg, 2, &ctx->rx_adu.fc, 1); pmsg += 2; rx_size -= 2; /* Get the data from the message */ ctx->rx_adu.length = 0; while (rx_size > 2) { hex2bin(pmsg, 2, prx_data, 1); prx_data++; pmsg += 2; rx_size -= 2; /* Increment the number of Modbus packets received */ ctx->rx_adu.length++; } /* Extract the message's LRC */ hex2bin(pmsg, 2, &frame_lrc, 1); ctx->rx_adu.crc = frame_lrc; /* * The LRC is calculated on the ADDR, FC and Data fields, * not the ':', CR/LF and LRC placed in the message * by the sender. We thus need to subtract 5 'ASCII' characters * from the received message to exclude these. */ calc_lrc = modbus_ascii_get_lrc(&cfg->uart_buf[1], (cfg->uart_buf_ctr - 5) / 2); if (calc_lrc != frame_lrc) { LOG_ERR("Calculated LRC does not match received LRC"); return -EIO; } return 0; } static uint8_t *modbus_ascii_bin2hex(uint8_t value, uint8_t *pbuf) { uint8_t u_nibble = (value >> 4) & 0x0F; uint8_t l_nibble = value & 0x0F; hex2char(u_nibble, pbuf); pbuf++; hex2char(l_nibble, pbuf); pbuf++; return pbuf; } static void modbus_ascii_tx_adu(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; uint16_t tx_bytes = 0; uint8_t lrc; uint8_t *pbuf; /* Place the start-of-frame character into output buffer */ cfg->uart_buf[0] = MODBUS_ASCII_START_FRAME_CHAR; tx_bytes = 1; pbuf = &cfg->uart_buf[1]; pbuf = modbus_ascii_bin2hex(ctx->tx_adu.unit_id, pbuf); tx_bytes += 2; pbuf = modbus_ascii_bin2hex(ctx->tx_adu.fc, pbuf); tx_bytes += 2; for (int i = 0; i < ctx->tx_adu.length; i++) { pbuf = modbus_ascii_bin2hex(ctx->tx_adu.data[i], pbuf); tx_bytes += 2; } /* * Add the LRC checksum in the packet. * * The LRC is calculated on the ADDR, FC and Data fields, * not the ':' which was inserted in the uart_buf[]. * Thus we subtract 1 ASCII character from the LRC. * The LRC and CR/LF bytes are not YET in the .uart_buf[]. */ lrc = modbus_ascii_get_lrc(&cfg->uart_buf[1], (tx_bytes - 1) / 2); pbuf = modbus_ascii_bin2hex(lrc, pbuf); tx_bytes += 2; *pbuf++ = MODBUS_ASCII_END_FRAME_CHAR1; *pbuf++ = MODBUS_ASCII_END_FRAME_CHAR2; tx_bytes += 2; /* Update the total number of bytes to send */ cfg->uart_buf_ctr = tx_bytes; cfg->uart_buf_ptr = &cfg->uart_buf[0]; LOG_DBG("Start frame transmission"); modbus_serial_rx_off(ctx); modbus_serial_tx_on(ctx); } #else static int modbus_ascii_rx_adu(struct modbus_context *ctx) { return 0; } static void modbus_ascii_tx_adu(struct modbus_context *ctx) { } #endif /* Copy Modbus RTU frame and check if the CRC is valid. */ static int modbus_rtu_rx_adu(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; uint16_t calc_crc; uint16_t crc_idx; uint8_t *data_ptr; /* Is the message long enough? */ if ((cfg->uart_buf_ctr < MODBUS_RTU_MIN_MSG_SIZE) || (cfg->uart_buf_ctr > CONFIG_MODBUS_BUFFER_SIZE)) { LOG_WRN("Frame length error"); return -EMSGSIZE; } ctx->rx_adu.unit_id = cfg->uart_buf[0]; ctx->rx_adu.fc = cfg->uart_buf[1]; data_ptr = &cfg->uart_buf[2]; /* Payload length without node address, function code, and CRC */ ctx->rx_adu.length = cfg->uart_buf_ctr - 4; /* CRC index */ crc_idx = cfg->uart_buf_ctr - sizeof(uint16_t); memcpy(ctx->rx_adu.data, data_ptr, ctx->rx_adu.length); ctx->rx_adu.crc = sys_get_le16(&cfg->uart_buf[crc_idx]); /* Calculate CRC over address, function code, and payload */ calc_crc = crc16_ansi(&cfg->uart_buf[0], cfg->uart_buf_ctr - sizeof(ctx->rx_adu.crc)); if (ctx->rx_adu.crc != calc_crc) { LOG_WRN("Calculated CRC does not match received CRC"); return -EIO; } return 0; } static void rtu_tx_adu(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; uint16_t tx_bytes = 0; uint8_t *data_ptr; cfg->uart_buf[0] = ctx->tx_adu.unit_id; cfg->uart_buf[1] = ctx->tx_adu.fc; tx_bytes = 2 + ctx->tx_adu.length; data_ptr = &cfg->uart_buf[2]; memcpy(data_ptr, ctx->tx_adu.data, ctx->tx_adu.length); ctx->tx_adu.crc = crc16_ansi(&cfg->uart_buf[0], ctx->tx_adu.length + 2); sys_put_le16(ctx->tx_adu.crc, &cfg->uart_buf[ctx->tx_adu.length + 2]); tx_bytes += 2; cfg->uart_buf_ctr = tx_bytes; cfg->uart_buf_ptr = &cfg->uart_buf[0]; LOG_HEXDUMP_DBG(cfg->uart_buf, cfg->uart_buf_ctr, "uart_buf"); LOG_DBG("Start frame transmission"); modbus_serial_rx_off(ctx); modbus_serial_tx_on(ctx); } /* * A byte has been received from a serial port. We just store it in the buffer * for processing when a complete packet has been received. */ static void cb_handler_rx(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; if ((ctx->mode == MODBUS_MODE_ASCII) && IS_ENABLED(CONFIG_MODBUS_ASCII_MODE)) { uint8_t c; if (uart_fifo_read(cfg->dev, &c, 1) != 1) { LOG_ERR("Failed to read UART"); return; } if (c == MODBUS_ASCII_START_FRAME_CHAR) { /* Restart a new frame */ cfg->uart_buf_ptr = &cfg->uart_buf[0]; cfg->uart_buf_ctr = 0; } if (cfg->uart_buf_ctr < CONFIG_MODBUS_BUFFER_SIZE) { *cfg->uart_buf_ptr++ = c; cfg->uart_buf_ctr++; } if (c == MODBUS_ASCII_END_FRAME_CHAR2) { k_work_submit(&ctx->server_work); } } else { int n; if (cfg->uart_buf_ctr == CONFIG_MODBUS_BUFFER_SIZE) { /* Buffer full. Disable interrupt until timeout. */ modbus_serial_rx_disable(ctx); return; } /* Restart timer on a new character */ k_timer_start(&cfg->rtu_timer, K_USEC(cfg->rtu_timeout), K_NO_WAIT); n = uart_fifo_read(cfg->dev, cfg->uart_buf_ptr, (CONFIG_MODBUS_BUFFER_SIZE - cfg->uart_buf_ctr)); cfg->uart_buf_ptr += n; cfg->uart_buf_ctr += n; } } static void cb_handler_tx(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; int n; if (cfg->uart_buf_ctr > 0) { n = uart_fifo_fill(cfg->dev, cfg->uart_buf_ptr, cfg->uart_buf_ctr); cfg->uart_buf_ctr -= n; cfg->uart_buf_ptr += n; return; } /* Must wait till the transmission is complete or * RS-485 transceiver could be disabled before all data has * been transmitted and message will be corrupted. */ if (uart_irq_tx_complete(cfg->dev)) { /* Disable transmission */ cfg->uart_buf_ptr = &cfg->uart_buf[0]; modbus_serial_tx_off(ctx); modbus_serial_rx_on(ctx); } } static void uart_cb_handler(const struct device *dev, void *app_data) { struct modbus_context *ctx = (struct modbus_context *)app_data; struct modbus_serial_config *cfg; if (ctx == NULL) { LOG_ERR("Modbus hardware is not properly initialized"); return; } cfg = ctx->cfg; if (uart_irq_update(cfg->dev) && uart_irq_is_pending(cfg->dev)) { if (uart_irq_rx_ready(cfg->dev)) { cb_handler_rx(ctx); } if (uart_irq_tx_ready(cfg->dev)) { cb_handler_tx(ctx); } } } /* This function is called when the RTU framing timer expires. */ static void rtu_tmr_handler(struct k_timer *t_id) { struct modbus_context *ctx; ctx = (struct modbus_context *)k_timer_user_data_get(t_id); if (ctx == NULL) { LOG_ERR("Failed to get Modbus context"); return; } k_work_submit(&ctx->server_work); } static int configure_gpio(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; if (cfg->de != NULL) { if (!device_is_ready(cfg->de->port)) { return -ENODEV; } if (gpio_pin_configure_dt(cfg->de, GPIO_OUTPUT_INACTIVE)) { return -EIO; } } if (cfg->re != NULL) { if (!device_is_ready(cfg->re->port)) { return -ENODEV; } if (gpio_pin_configure_dt(cfg->re, GPIO_OUTPUT_INACTIVE)) { return -EIO; } } return 0; } static inline int configure_uart(struct modbus_context *ctx, struct modbus_iface_param *param) { struct modbus_serial_config *cfg = ctx->cfg; struct uart_config uart_cfg = { .baudrate = param->serial.baud, .flow_ctrl = UART_CFG_FLOW_CTRL_NONE, }; if (ctx->mode == MODBUS_MODE_ASCII) { uart_cfg.data_bits = UART_CFG_DATA_BITS_7; } else { uart_cfg.data_bits = UART_CFG_DATA_BITS_8; } switch (param->serial.parity) { case UART_CFG_PARITY_ODD: case UART_CFG_PARITY_EVEN: uart_cfg.parity = param->serial.parity; uart_cfg.stop_bits = UART_CFG_STOP_BITS_1; break; case UART_CFG_PARITY_NONE: /* Use of no parity requires 2 stop bits */ uart_cfg.parity = param->serial.parity; uart_cfg.stop_bits = UART_CFG_STOP_BITS_2; break; default: return -EINVAL; } if (ctx->client) { /* Allow custom stop bit settings only in client mode */ switch (param->serial.stop_bits_client) { case UART_CFG_STOP_BITS_0_5: case UART_CFG_STOP_BITS_1: case UART_CFG_STOP_BITS_1_5: case UART_CFG_STOP_BITS_2: uart_cfg.stop_bits = param->serial.stop_bits_client; break; default: return -EINVAL; } } if (uart_configure(cfg->dev, &uart_cfg) != 0) { LOG_ERR("Failed to configure UART"); return -EINVAL; } return 0; } void modbus_serial_rx_disable(struct modbus_context *ctx) { modbus_serial_rx_off(ctx); } void modbus_serial_rx_enable(struct modbus_context *ctx) { modbus_serial_rx_on(ctx); } int modbus_serial_rx_adu(struct modbus_context *ctx) { struct modbus_serial_config *cfg = ctx->cfg; int rc = 0; switch (ctx->mode) { case MODBUS_MODE_RTU: rc = modbus_rtu_rx_adu(ctx); break; case MODBUS_MODE_ASCII: if (!IS_ENABLED(CONFIG_MODBUS_ASCII_MODE)) { return -ENOTSUP; } rc = modbus_ascii_rx_adu(ctx); break; default: LOG_ERR("Unsupported MODBUS mode"); return -ENOTSUP; } cfg->uart_buf_ctr = 0; cfg->uart_buf_ptr = &cfg->uart_buf[0]; return rc; } int modbus_serial_tx_adu(struct modbus_context *ctx) { switch (ctx->mode) { case MODBUS_MODE_RTU: rtu_tx_adu(ctx); return 0; case MODBUS_MODE_ASCII: if (IS_ENABLED(CONFIG_MODBUS_ASCII_MODE)) { modbus_ascii_tx_adu(ctx); return 0; } default: break; } return -ENOTSUP; } int modbus_serial_init(struct modbus_context *ctx, struct modbus_iface_param param) { struct modbus_serial_config *cfg = ctx->cfg; const uint32_t if_delay_max = 3500000; const uint32_t numof_bits = 11; switch (param.mode) { case MODBUS_MODE_RTU: case MODBUS_MODE_ASCII: ctx->mode = param.mode; break; default: return -ENOTSUP; } if (!device_is_ready(cfg->dev)) { LOG_ERR("Bus device %s is not ready", cfg->dev->name); return -ENODEV; } if (IS_ENABLED(CONFIG_UART_USE_RUNTIME_CONFIGURE)) { if (configure_uart(ctx, ¶m) != 0) { return -EINVAL; } } if (param.serial.baud <= 38400) { cfg->rtu_timeout = (numof_bits * if_delay_max) / param.serial.baud; } else { cfg->rtu_timeout = (numof_bits * if_delay_max) / 38400; } if (configure_gpio(ctx) != 0) { return -EIO; } cfg->uart_buf_ctr = 0; cfg->uart_buf_ptr = &cfg->uart_buf[0]; uart_irq_callback_user_data_set(cfg->dev, uart_cb_handler, ctx); k_timer_init(&cfg->rtu_timer, rtu_tmr_handler, NULL); k_timer_user_data_set(&cfg->rtu_timer, ctx); modbus_serial_rx_on(ctx); LOG_INF("RTU timeout %u us", cfg->rtu_timeout); return 0; } void modbus_serial_disable(struct modbus_context *ctx) { modbus_serial_tx_off(ctx); modbus_serial_rx_off(ctx); k_timer_stop(&ctx->cfg->rtu_timer); }