/* * Copyright (c) 2018 SiFive Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include LOG_MODULE_REGISTER(spi_sifive); #include "spi_sifive.h" #include /* Helper Functions */ static inline void sys_set_mask(mem_addr_t addr, u32_t mask, u32_t value) { u32_t temp = sys_read32(addr); temp &= ~(mask); temp |= value; sys_write32(temp, addr); } int spi_config(struct device *dev, u32_t frequency, u16_t operation) { u32_t div; u32_t fmt_len; if (SPI_OP_MODE_GET(operation) != SPI_OP_MODE_MASTER) { return -ENOTSUP; } if (operation & SPI_MODE_LOOP) { return -ENOTSUP; } /* Set the SPI frequency */ div = (SPI_CFG(dev)->f_sys / (frequency * 2U)) - 1; sys_write32((SF_SCKDIV_DIV_MASK & div), SPI_REG(dev, REG_SCKDIV)); /* Set the polarity */ if (operation & SPI_MODE_CPOL) { /* If CPOL is set, then SCK idles at logical 1 */ sys_set_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_POL); } else { /* SCK idles at logical 0 */ sys_clear_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_POL); } /* Set the phase */ if (operation & SPI_MODE_CPHA) { /* * If CPHA is set, then data is sampled * on the trailing SCK edge */ sys_set_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_PHA); } else { /* Data is sampled on the leading SCK edge */ sys_clear_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_PHA); } /* Get the frame length */ fmt_len = SPI_WORD_SIZE_GET(operation); if (fmt_len > SF_FMT_LEN_MASK) { return -ENOTSUP; } /* Set the frame length */ fmt_len = fmt_len << SF_FMT_LEN; fmt_len &= SF_FMT_LEN_MASK; sys_set_mask(SPI_REG(dev, REG_FMT), SF_FMT_LEN_MASK, fmt_len); if ((operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { return -ENOTSUP; } /* Set single line operation */ sys_set_mask(SPI_REG(dev, REG_FMT), SF_FMT_PROTO_MASK, SF_FMT_PROTO_SINGLE); /* Set the endianness */ if (operation & SPI_TRANSFER_LSB) { sys_set_bit(SPI_REG(dev, REG_FMT), SF_FMT_ENDIAN); } else { sys_clear_bit(SPI_REG(dev, REG_FMT), SF_FMT_ENDIAN); } return 0; } void spi_sifive_send(struct device *dev, u16_t frame) { while (SPI_REG(dev, REG_TXDATA) & SF_TXDATA_FULL) { } sys_write32((u32_t) frame, SPI_REG(dev, REG_TXDATA)); } u16_t spi_sifive_recv(struct device *dev) { u32_t val; while ((val = sys_read32(SPI_REG(dev, REG_RXDATA))) & SF_RXDATA_EMPTY) { } return (u16_t) val; } void spi_sifive_xfer(struct device *dev, const bool hw_cs_control) { struct spi_context *ctx = &SPI_DATA(dev)->ctx; u32_t send_len = spi_context_longest_current_buf(ctx); for (u32_t i = 0; i < send_len; i++) { /* Send a frame */ if (i < ctx->tx_len) { spi_sifive_send(dev, (u16_t) (ctx->tx_buf)[i]); } else { /* Send dummy bytes */ spi_sifive_send(dev, 0); } /* Receive a frame */ if (i < ctx->rx_len) { ctx->rx_buf[i] = (u8_t) spi_sifive_recv(dev); } else { /* Discard returned value */ spi_sifive_recv(dev); } } /* Deassert the CS line */ if (!hw_cs_control) { spi_context_cs_control(&SPI_DATA(dev)->ctx, false); } else { sys_write32(SF_CSMODE_OFF, SPI_REG(dev, REG_CSMODE)); } spi_context_complete(ctx, 0); } /* API Functions */ int spi_sifive_init(struct device *dev) { /* Disable SPI Flash mode */ sys_clear_bit(SPI_REG(dev, REG_FCTRL), SF_FCTRL_EN); /* Make sure the context is unlocked */ spi_context_unlock_unconditionally(&SPI_DATA(dev)->ctx); return 0; } int spi_sifive_transceive(struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { int rc = 0; bool hw_cs_control = false; /* Lock the SPI Context */ spi_context_lock(&SPI_DATA(dev)->ctx, false, NULL); /* Configure the SPI bus */ SPI_DATA(dev)->ctx.config = config; /* * If the chip select configuration is not present, we'll ask the * SPI peripheral itself to control the CS line */ if (config->cs == NULL) { hw_cs_control = true; } if (!hw_cs_control) { /* * If the user has requested manual GPIO control, ask the * context for control and disable HW control */ spi_context_cs_configure(&SPI_DATA(dev)->ctx); sys_write32(SF_CSMODE_OFF, SPI_REG(dev, REG_CSMODE)); } else { /* * Tell the hardware to control the requested CS pin. * NOTE: * For the SPI peripheral, the pin number is not the * GPIO pin, but the index into the list of available * CS lines for the SPI peripheral. */ sys_write32(config->slave, SPI_REG(dev, REG_CSID)); sys_write32(SF_CSMODE_OFF, SPI_REG(dev, REG_CSMODE)); } rc = spi_config(dev, config->frequency, config->operation); if (rc < 0) { spi_context_release(&SPI_DATA(dev)->ctx, rc); return rc; } spi_context_buffers_setup(&SPI_DATA(dev)->ctx, tx_bufs, rx_bufs, 1); /* Assert the CS line */ if (!hw_cs_control) { spi_context_cs_control(&SPI_DATA(dev)->ctx, true); } else { sys_write32(SF_CSMODE_HOLD, SPI_REG(dev, REG_CSMODE)); } /* Perform transfer */ spi_sifive_xfer(dev, hw_cs_control); rc = spi_context_wait_for_completion(&SPI_DATA(dev)->ctx); spi_context_release(&SPI_DATA(dev)->ctx, rc); return rc; } int spi_sifive_release(struct device *dev, const struct spi_config *config) { spi_context_unlock_unconditionally(&SPI_DATA(dev)->ctx); return 0; } /* Device Instantiation */ static struct spi_driver_api spi_sifive_api = { .transceive = spi_sifive_transceive, .release = spi_sifive_release, }; #define SPI_INIT(n) \ static struct spi_sifive_data spi_sifive_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_sifive_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_sifive_data_##n, ctx), \ }; \ static struct spi_sifive_cfg spi_sifive_cfg_##n = { \ .base = DT_INST_##n##_SIFIVE_SPI0_CONTROL_BASE_ADDRESS, \ .f_sys = DT_INST_##n##_SIFIVE_SPI0_CLOCK_FREQUENCY, \ }; \ DEVICE_AND_API_INIT(spi_##n, \ DT_INST_##n##_SIFIVE_SPI0_LABEL, \ spi_sifive_init, \ &spi_sifive_data_##n, \ &spi_sifive_cfg_##n, \ POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, \ &spi_sifive_api) #ifndef CONFIG_SIFIVE_SPI_0_ROM #ifdef DT_INST_0_SIFIVE_SPI0_LABEL SPI_INIT(0); #endif /* DT_INST_0_SIFIVE_SPI0_LABEL */ #endif /* !DT_SIFIVE_SPI0_0_ROM */ #ifdef DT_INST_1_SIFIVE_SPI0_LABEL SPI_INIT(1); #endif /* DT_INST_1_SIFIVE_SPI0_LABEL */ #ifdef DT_INST_2_SIFIVE_SPI0_LABEL SPI_INIT(2); #endif /* DT_INST_2_SIFIVE_SPI0_LABEL */