/* * Copyright (c) 2010-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Kernel semaphore object. * * The semaphores are of the 'counting' type, i.e. each 'give' operation will * increment the internal count by 1, if no fiber is pending on it. The 'init' * call initializes the count to 0. Following multiple 'give' operations, the * same number of 'take' operations can be performed without the calling fiber * having to pend on the semaphore, or the calling task having to poll. */ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SEMAPHORE_GROUPS struct _sem_desc { sys_dnode_t semg_node; /* Node in list of semaphores */ struct k_thread *thread; /* Thread waiting for semaphores */ struct k_sem *sem; /* Semaphore on which to wait */ }; struct _sem_thread { struct _thread_base dummy; struct _sem_desc desc; }; #endif extern struct k_sem _k_sem_list_start[]; extern struct k_sem _k_sem_list_end[]; struct k_sem *_trace_list_k_sem; #ifdef CONFIG_OBJECT_TRACING /* * Complete initialization of statically defined semaphores. */ static int init_sem_module(struct device *dev) { ARG_UNUSED(dev); struct k_sem *sem; for (sem = _k_sem_list_start; sem < _k_sem_list_end; sem++) { SYS_TRACING_OBJ_INIT(k_sem, sem); } return 0; } SYS_INIT(init_sem_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ void k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit) { __ASSERT(limit != 0, "limit cannot be zero"); sem->count = initial_count; sem->limit = limit; sys_dlist_init(&sem->wait_q); SYS_TRACING_OBJ_INIT(k_sem, sem); } #ifdef CONFIG_SEMAPHORE_GROUPS int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem, int32_t timeout) { unsigned int key; struct k_sem *item = *sem_array; int num = 0; __ASSERT(sem_array[0] != K_END, "Empty semaphore list"); key = irq_lock(); do { if (item->count > 0) { item->count--; /* Available semaphore found */ irq_unlock(key); *sem = item; return 0; } num++; item = sem_array[num]; } while (item != K_END); if (timeout == K_NO_WAIT) { irq_unlock(key); *sem = NULL; return -EBUSY; } struct _sem_thread wait_objects[num]; int32_t priority = k_thread_priority_get(_current); sys_dlist_t list; sys_dlist_init(&list); _current->base.swap_data = &list; for (int i = 0; i < num; i++) { _init_thread_base(&wait_objects[i].dummy, priority, _THREAD_DUMMY, 0); sys_dlist_append(&list, &wait_objects[i].desc.semg_node); wait_objects[i].desc.thread = _current; wait_objects[i].desc.sem = sem_array[i]; _pend_thread((struct k_thread *)&wait_objects[i].dummy, &sem_array[i]->wait_q, timeout); } /* Pend the current thread on a dummy wait queue */ _wait_q_t wait_q; sys_dlist_init(&wait_q); _pend_current_thread(&wait_q, timeout); if (_Swap(key) != 0) { *sem = NULL; return -EAGAIN; } /* The accepted semaphore is the only one left on the list */ struct _sem_desc *desc = (struct _sem_desc *)sys_dlist_get(&list); *sem = desc->sem; return 0; } /** * @brief Cancel all but specified semaphore in list if part of a semphore group * * Interrupts are locked prior to calling this routine * * @return 0 if not part of semaphore group, 1 if it is */ static int handle_sem_group(struct k_sem *sem, struct k_thread *thread) { struct _sem_thread *dummy = (struct _sem_thread *)thread; struct _sem_thread *sem_thread; struct _sem_desc *desc = NULL; sys_dlist_t *list; sys_dnode_t *node; sys_dnode_t *next; if (!(thread->base.thread_state & _THREAD_DUMMY)) { /* * The awakened thread is a real thread and thus was not * involved in a semaphore group operation. */ return 0; } /* * The awakened thread is a dummy thread and thus was involved * in a semaphore group operation. */ list = (sys_dlist_t *)dummy->desc.thread->base.swap_data; node = sys_dlist_peek_head(list); __ASSERT(node != NULL, ""); do { next = sys_dlist_peek_next(list, node); desc = (struct _sem_desc *)node; if (desc->sem != sem) { sem_thread = CONTAINER_OF(desc, struct _sem_thread, desc); struct k_thread *dummy_thread = (struct k_thread *)&sem_thread->dummy; if (_is_thread_timeout_expired(dummy_thread)) { continue; } _abort_thread_timeout(dummy_thread); _unpend_thread(dummy_thread); sys_dlist_remove(node); } node = next; } while (node != NULL); /* * If 'desc' is NULL, then the user-supplied 'sem_array' had only * one semaphore in it. This is considered a user error as * k_sem_give() should have been called instead. */ __ASSERT(desc != NULL, ""); /* * As this code may be executed several times by a semaphore group give * operation, it is important to ensure that the attempt to ready the * master thread is done only once. */ if (!_is_thread_ready(desc->thread)) { _abort_thread_timeout(desc->thread); _mark_thread_as_not_pending(desc->thread); if (_is_thread_ready(desc->thread)) { _add_thread_to_ready_q(desc->thread); } } _set_thread_return_value(desc->thread, 0); return 1; } #else #define handle_sem_group(sem, thread) 0 #endif /** * @brief Common semaphore give code * * @return true if _Swap() will need to be invoked; false if not */ static bool sem_give_common(struct k_sem *sem) { struct k_thread *thread; thread = _unpend_first_thread(&sem->wait_q); if (!thread) { /* * No thread is waiting on the semaphore. * Increment the semaphore's count unless * its limit has already been reached. */ sem->count += (sem->count != sem->limit); return false; } _abort_thread_timeout(thread); if (!handle_sem_group(sem, thread)) { /* Handle the non-group case */ _ready_thread(thread); _set_thread_return_value(thread, 0); } return !_is_in_isr() && _must_switch_threads(); } /* * This function is meant to be called only by * _sys_event_logger_put_non_preemptible(), which itself is really meant to be * called only by _sys_k_event_logger_context_switch(), used within a context * switch to log the event. * * WARNING: * It must be called with interrupts already locked. * It cannot be called for a sempahore part of a group. */ void _sem_give_non_preemptible(struct k_sem *sem) { struct k_thread *thread; thread = _unpend_first_thread(&sem->wait_q); if (!thread) { /* increment semaphore's count unless limit is reached */ sem->count += (sem->count != sem->limit); return; } _abort_thread_timeout(thread); _ready_thread(thread); _set_thread_return_value(thread, 0); } #ifdef CONFIG_SEMAPHORE_GROUPS void k_sem_group_give(struct k_sem *sem_array[]) { unsigned int key; bool swap_needed = false; __ASSERT(sem_array[0] != K_END, "Empty semaphore list"); key = irq_lock(); for (int i = 0; sem_array[i] != K_END; i++) { swap_needed |= sem_give_common(sem_array[i]); } if (swap_needed) { _Swap(key); } else { irq_unlock(key); } } void k_sem_group_reset(struct k_sem *sem_array[]) { unsigned int key; key = irq_lock(); for (int i = 0; sem_array[i] != K_END; i++) { sem_array[i]->count = 0; } irq_unlock(key); } #endif void k_sem_give(struct k_sem *sem) { unsigned int key; key = irq_lock(); if (sem_give_common(sem)) { _Swap(key); } else { irq_unlock(key); } } int k_sem_take(struct k_sem *sem, int32_t timeout) { __ASSERT(!_is_in_isr() || timeout == K_NO_WAIT, ""); unsigned int key = irq_lock(); if (likely(sem->count > 0)) { sem->count--; irq_unlock(key); return 0; } if (timeout == K_NO_WAIT) { irq_unlock(key); return -EBUSY; } _pend_current_thread(&sem->wait_q, timeout); return _Swap(key); }