#!/usr/bin/env python3 # # Copyright (c) 2017 Intel Corporation # Copyright (c) 2020 Nordic Semiconductor NA # # SPDX-License-Identifier: Apache-2.0 """Translate generic handles into ones optimized for the application. Immutable device data includes information about dependencies, e.g. that a particular sensor is controlled through a specific I2C bus and that it signals event on a pin on a specific GPIO controller. This information is encoded in the first-pass binary using identifiers derived from the devicetree. This script extracts those identifiers and replaces them with ones optimized for use with the devices actually present. For example the sensor might have a first-pass handle defined by its devicetree ordinal 52, with the I2C driver having ordinal 24 and the GPIO controller ordinal 14. The runtime ordinal is the index of the corresponding device in the static devicetree array, which might be 6, 5, and 3, respectively. The output is a C source file that provides alternative definitions for the array contents referenced from the immutable device objects. In the final link these definitions supersede the ones in the driver-specific object file. """ import sys import argparse import os import struct import pickle from distutils.version import LooseVersion import elftools from elftools.elf.elffile import ELFFile from elftools.elf.sections import SymbolTableSection import elftools.elf.enums if LooseVersion(elftools.__version__) < LooseVersion('0.24'): sys.exit("pyelftools is out of date, need version 0.24 or later") scr = os.path.basename(sys.argv[0]) def debug(text): if not args.verbose: return sys.stdout.write(scr + ": " + text + "\n") def parse_args(): global args parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("-k", "--kernel", required=True, help="Input zephyr ELF binary") parser.add_argument("-o", "--output-source", required=True, help="Output source file") parser.add_argument("-v", "--verbose", action="store_true", help="Print extra debugging information") parser.add_argument("-z", "--zephyr-base", help="Path to current Zephyr base. If this argument \ is not provided the environment will be checked for \ the ZEPHYR_BASE environment variable.") args = parser.parse_args() if "VERBOSE" in os.environ: args.verbose = 1 ZEPHYR_BASE = args.zephyr_base or os.getenv("ZEPHYR_BASE") if ZEPHYR_BASE is None: sys.exit("-z / --zephyr-base not provided. Please provide " "--zephyr-base or set ZEPHYR_BASE in environment") sys.path.insert(0, os.path.join(ZEPHYR_BASE, "scripts/dts")) def symbol_data(elf, sym): addr = sym.entry.st_value len = sym.entry.st_size for section in elf.iter_sections(): start = section['sh_addr'] end = start + section['sh_size'] if (start <= addr) and (addr + len) <= end: offset = addr - section['sh_addr'] return bytes(section.data()[offset:offset + len]) def symbol_handle_data(elf, sym): data = symbol_data(elf, sym) if data: format = "<" if elf.little_endian else ">" format += "%uh" % (len(data) / 2) return struct.unpack(format, data) # These match the corresponding constants in DEVICE_HANDLE_SEP = -32768 DEVICE_HANDLE_ENDS = 32767 def handle_name(hdl): if hdl == DEVICE_HANDLE_SEP: return "DEVICE_HANDLE_SEP" if hdl == DEVICE_HANDLE_ENDS: return "DEVICE_HANDLE_ENDS" if hdl == 0: return "DEVICE_HANDLE_NULL" return str(int(hdl)) class Device: """ Represents information about a device object and its references to other objects. """ def __init__(self, elf, ld_constants, sym, addr): self.elf = elf self.ld_constants = ld_constants self.sym = sym self.addr = addr # Point to the handles instance associated with the device; # assigned by correlating the device struct handles pointer # value with the addr of a Handles instance. self.__handles = None @property def obj_handles(self): """ Returns the value from the device struct handles field, pointing to the array of handles for devices this device depends on. """ if self.__handles is None: data = symbol_data(self.elf, self.sym) format = "<" if self.elf.little_endian else ">" if self.elf.elfclass == 32: format += "I" size = 4 else: format += "Q" size = 8 offset = self.ld_constants["DEVICE_STRUCT_HANDLES_OFFSET"] self.__handles = struct.unpack(format, data[offset:offset + size])[0] return self.__handles class Handles: def __init__(self, sym, addr, handles, node): self.sym = sym self.addr = addr self.handles = handles self.node = node self.dep_ord = None self.dev_deps = None self.ext_deps = None def main(): parse_args() assert args.kernel, "--kernel ELF required to extract data" elf = ELFFile(open(args.kernel, "rb")) edtser = os.path.join(os.path.split(args.kernel)[0], "edt.pickle") with open(edtser, 'rb') as f: edt = pickle.load(f) devices = [] handles = [] # Leading _ are stripped from the stored constant key want_constants = set(["__device_start", "_DEVICE_STRUCT_SIZEOF", "_DEVICE_STRUCT_HANDLES_OFFSET"]) ld_constants = dict() for section in elf.iter_sections(): if isinstance(section, SymbolTableSection): for sym in section.iter_symbols(): if sym.name in want_constants: ld_constants[sym.name.lstrip("_")] = sym.entry.st_value continue if sym.entry.st_info.type != 'STT_OBJECT': continue if sym.name.startswith("__device"): addr = sym.entry.st_value if sym.name.startswith("__device_"): devices.append(Device(elf, ld_constants, sym, addr)) debug("device %s" % (sym.name,)) elif sym.name.startswith("__devicehdl_"): hdls = symbol_handle_data(elf, sym) # The first element of the hdls array is the dependency # ordinal of the device, which identifies the devicetree # node. node = edt.dep_ord2node[hdls[0]] if (hdls and hdls[0] != 0) else None handles.append(Handles(sym, addr, hdls, node)) debug("handles %s %d %s" % (sym.name, hdls[0] if hdls else -1, node)) assert len(want_constants) == len(ld_constants), "linker map data incomplete" devices = sorted(devices, key = lambda k: k.sym.entry.st_value) device_start_addr = ld_constants["device_start"] device_size = 0 assert len(devices) == len(handles), 'mismatch devices and handles' used_nodes = set() for handle in handles: for device in devices: if handle.addr == device.obj_handles: handle.device = device break device = handle.device assert device, 'no device for %s' % (handle.sym.name,) device.handle = handle if device_size == 0: device_size = device.sym.entry.st_size # The device handle is one plus the ordinal of this device in # the device table. device.dev_handle = 1 + int((device.sym.entry.st_value - device_start_addr) / device_size) debug("%s dev ordinal %d" % (device.sym.name, device.dev_handle)) n = handle.node if n is not None: debug("%s dev ordinal %d\n\t%s" % (n.path, device.dev_handle, ' ; '.join(str(_) for _ in handle.handles))) used_nodes.add(n) n.__device = device else: debug("orphan %d" % (device.dev_handle,)) hv = handle.handles hvi = 1 handle.dev_deps = [] handle.ext_deps = [] deps = handle.dev_deps while True: h = hv[hvi] if h == DEVICE_HANDLE_ENDS: break if h == DEVICE_HANDLE_SEP: deps = handle.ext_deps else: deps.append(h) n = edt hvi += 1 # Compute the dependency graph induced from the full graph restricted to the # the nodes that exist in the application. Note that the edges in the # induced graph correspond to paths in the full graph. root = edt.dep_ord2node[0] assert root not in used_nodes for sn in used_nodes: # Where we're storing the final set of nodes: these are all used sn.__depends = set() deps = set(sn.depends_on) debug("\nNode: %s\nOrig deps:\n\t%s" % (sn.path, "\n\t".join([dn.path for dn in deps]))) while len(deps) > 0: dn = deps.pop() if dn in used_nodes: # this is used sn.__depends.add(dn) elif dn != root: # forward the dependency up one level for ddn in dn.depends_on: deps.add(ddn) debug("final deps:\n\t%s\n" % ("\n\t".join([ _dn.path for _dn in sn.__depends]))) with open(args.output_source, "w") as fp: fp.write('#include \n') fp.write('#include \n') for dev in devices: hs = dev.handle assert hs, "no hs for %s" % (dev.sym.name,) dep_paths = [] ext_paths = [] hdls = [] sn = hs.node if sn: hdls.extend(dn.__device.dev_handle for dn in sn.__depends) for dn in sn.depends_on: if dn in sn.__depends: dep_paths.append(dn.path) else: dep_paths.append('(%s)' % dn.path) if len(hs.ext_deps) > 0: # TODO: map these to something smaller? ext_paths.extend(map(str, hs.ext_deps)) hdls.append(DEVICE_HANDLE_SEP) hdls.extend(hs.ext_deps) # When CONFIG_USERSPACE is enabled the pre-built elf is # also used to get hashes that identify kernel objects by # address. We can't allow the size of any object in the # final elf to change. while len(hdls) < len(hs.handles): hdls.append(DEVICE_HANDLE_ENDS) assert len(hdls) == len(hs.handles), "%s handle overflow" % (dev.sym.name,) lines = [ '', '/* %d : %s:' % (dev.dev_handle, (sn and sn.path) or "sysinit"), ] if len(dep_paths) > 0: lines.append(' * - %s' % ('\n * - '.join(dep_paths))) if len(ext_paths) > 0: lines.append(' * + %s' % ('\n * + '.join(ext_paths))) lines.extend([ ' */', 'const device_handle_t __aligned(2) __attribute__((__section__(".__device_handles_pass2")))', '%s[] = { %s };' % (hs.sym.name, ', '.join([handle_name(_h) for _h in hdls])), '', ]) fp.write('\n'.join(lines)) if __name__ == "__main__": main()