/* k_server.c - microkernel server */ /* * Copyright (c) 2010, 2012-2015 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * DESCRIPTION * This module implements the microkernel server, which processes service * requests from tasks (and, less commonly, fibers and ISRs). The requests are * service by a high priority fiber, thereby ensuring that requests are * processed in a timely manner and in a single threaded manner that prevents * simultaneous requests from interfering with each other. */ #include #include #include #include #include #include #include #include extern const kernelfunc _k_server_dispatch_table[]; /** * * @brief Select task to be executed by microkernel * * Locates that highest priority task queue that is non-empty and chooses the * task at the head of that queue. It's guaranteed that there will always be * a non-empty queue, since the idle task is always executable. * * @return pointer to selected task */ static struct k_task *next_task_select(void) { int K_PrioListIdx; #if (CONFIG_NUM_TASK_PRIORITIES <= 32) K_PrioListIdx = find_lsb_set(_k_task_priority_bitmap[0]) - 1; #else int bit_map; int set_bit_pos; K_PrioListIdx = -1; for (bit_map = 0; ; bit_map++) { set_bit_pos = find_lsb_set(_k_task_priority_bitmap[bit_map]); if (set_bit_pos) { K_PrioListIdx += set_bit_pos; break; } K_PrioListIdx += 32; } #endif return _k_task_priority_list[K_PrioListIdx].head; } /** * * @brief The microkernel thread entry point * * This function implements the microkernel fiber. It waits for command * packets to arrive on its command stack. It executes all commands on the * stack and then sets up the next task that is ready to run. Next it * goes to wait on further inputs on the command stack. * * @return Does not return. */ FUNC_NORETURN void _k_server(int unused1, int unused2) { struct k_args *pArgs; struct k_task *pNextTask; ARG_UNUSED(unused1); ARG_UNUSED(unused2); /* indicate that failure of this fiber may be fatal to the entire system */ _nanokernel.current->flags |= ESSENTIAL; while (1) { /* forever */ pArgs = (struct k_args *)nano_fiber_stack_pop_wait( &_k_command_stack); /* will schedule */ do { int cmd_type = (int)pArgs & KERNEL_CMD_TYPE_MASK; if (cmd_type == KERNEL_CMD_PACKET_TYPE) { /* process command packet */ #ifdef CONFIG_TASK_MONITOR if (_k_monitor_mask & MON_KSERV) { _k_task_monitor_args(pArgs); } #endif (*pArgs->Comm)(pArgs); } else if (cmd_type == KERNEL_CMD_EVENT_TYPE) { /* give event */ #ifdef CONFIG_TASK_MONITOR if (_k_monitor_mask & MON_EVENT) { _k_task_monitor_args(pArgs); } #endif kevent_t event = (int)pArgs & ~KERNEL_CMD_TYPE_MASK; _k_do_event_signal(event); } else { /* cmd_type == KERNEL_CMD_SEMAPHORE_TYPE */ /* give semaphore */ #ifdef CONFIG_TASK_MONITOR /* task monitoring for giving semaphore not implemented */ #endif ksem_t sem = (int)pArgs & ~KERNEL_CMD_TYPE_MASK; _k_sem_struct_value_update(1, (struct _k_sem_struct *)sem); } /* * check if another fiber (of equal or greater priority) * needs to run */ if (_nanokernel.fiber) { fiber_yield(); } } while (nano_fiber_stack_pop(&_k_command_stack, (void *)&pArgs)); pNextTask = next_task_select(); if (_k_current_task != pNextTask) { /* * switch from currently selected task to a different * one */ #ifdef CONFIG_WORKLOAD_MONITOR if (pNextTask->id == 0x00000000) { _k_workload_monitor_idle_start(); } else if (_k_current_task->id == 0x00000000) { _k_workload_monitor_idle_end(); } #endif _k_current_task = pNextTask; _nanokernel.task = (struct tcs *)pNextTask->workspace; #ifdef CONFIG_TASK_MONITOR if (_k_monitor_mask & MON_TSWAP) { _k_task_monitor(_k_current_task, 0); } #endif } } /* * Code analyzers may complain that _k_server() uses an infinite loop * unless we indicate that this is intentional */ CODE_UNREACHABLE; }