/* * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright (c) 2017, NXP * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #define SYS_LOG_LEVEL CONFIG_SYS_LOG_SPI_LEVEL #include #include "spi_context.h" struct spi_mcux_config { SPI_Type *base; char *clock_name; clock_control_subsys_t clock_subsys; void (*irq_config_func)(struct device *dev); }; struct spi_mcux_data { dspi_master_handle_t handle; struct spi_context ctx; size_t transfer_len; }; static void spi_mcux_transfer_next_packet(struct device *dev) { const struct spi_mcux_config *config = dev->config->config_info; struct spi_mcux_data *data = dev->driver_data; SPI_Type *base = config->base; struct spi_context *ctx = &data->ctx; dspi_transfer_t transfer; status_t status; if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) { /* nothing left to rx or tx, we're done! */ spi_context_cs_control(&data->ctx, false); spi_context_complete(&data->ctx, 0); return; } transfer.configFlags = kDSPI_MasterCtar0 | kDSPI_MasterPcsContinuous | (ctx->config->slave << DSPI_MASTER_PCS_SHIFT); if (ctx->tx_len == 0) { /* rx only, nothing to tx */ transfer.txData = NULL; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->rx_len; } else if (ctx->rx_len == 0) { /* tx only, nothing to rx */ transfer.txData = (u8_t *) ctx->tx_buf; transfer.rxData = NULL; transfer.dataSize = ctx->tx_len; } else if (ctx->tx_len == ctx->rx_len) { /* rx and tx are the same length */ transfer.txData = (u8_t *) ctx->tx_buf; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->tx_len; } else if (ctx->tx_len > ctx->rx_len) { /* Break up the tx into multiple transfers so we don't have to * rx into a longer intermediate buffer. Leave chip select * active between transfers. */ transfer.txData = (u8_t *) ctx->tx_buf; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->rx_len; transfer.configFlags |= kDSPI_MasterActiveAfterTransfer; } else { /* Break up the rx into multiple transfers so we don't have to * tx from a longer intermediate buffer. Leave chip select * active between transfers. */ transfer.txData = (u8_t *) ctx->tx_buf; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->tx_len; transfer.configFlags |= kDSPI_MasterActiveAfterTransfer; } if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) { transfer.configFlags |= kDSPI_MasterActiveAfterTransfer; } data->transfer_len = transfer.dataSize; status = DSPI_MasterTransferNonBlocking(base, &data->handle, &transfer); if (status != kStatus_Success) { SYS_LOG_ERR("Transfer could not start"); } } static void spi_mcux_isr(void *arg) { struct device *dev = (struct device *)arg; const struct spi_mcux_config *config = dev->config->config_info; struct spi_mcux_data *data = dev->driver_data; SPI_Type *base = config->base; DSPI_MasterTransferHandleIRQ(base, &data->handle); } static void spi_mcux_master_transfer_callback(SPI_Type *base, dspi_master_handle_t *handle, status_t status, void *userData) { struct device *dev = userData; struct spi_mcux_data *data = dev->driver_data; spi_context_update_tx(&data->ctx, 1, data->transfer_len); spi_context_update_rx(&data->ctx, 1, data->transfer_len); spi_mcux_transfer_next_packet(dev); } static int spi_mcux_configure(struct device *dev, const struct spi_config *spi_cfg) { const struct spi_mcux_config *config = dev->config->config_info; struct spi_mcux_data *data = dev->driver_data; SPI_Type *base = config->base; dspi_master_config_t master_config; struct device *clock_dev; u32_t clock_freq; u32_t word_size; DSPI_MasterGetDefaultConfig(&master_config); if (spi_cfg->slave > FSL_FEATURE_DSPI_CHIP_SELECT_COUNT) { SYS_LOG_ERR("Slave %d is greater than %d", spi_cfg->slave, FSL_FEATURE_DSPI_CHIP_SELECT_COUNT); return -EINVAL; } word_size = SPI_WORD_SIZE_GET(spi_cfg->operation); if (word_size > FSL_FEATURE_DSPI_MAX_DATA_WIDTH) { SYS_LOG_ERR("Word size %d is greater than %d", word_size, FSL_FEATURE_DSPI_MAX_DATA_WIDTH); return -EINVAL; } master_config.ctarConfig.bitsPerFrame = word_size; master_config.ctarConfig.cpol = (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) ? kDSPI_ClockPolarityActiveLow : kDSPI_ClockPolarityActiveHigh; master_config.ctarConfig.cpha = (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) ? kDSPI_ClockPhaseSecondEdge : kDSPI_ClockPhaseFirstEdge; master_config.ctarConfig.direction = (spi_cfg->operation & SPI_TRANSFER_LSB) ? kDSPI_LsbFirst : kDSPI_MsbFirst; master_config.ctarConfig.baudRate = spi_cfg->frequency; clock_dev = device_get_binding(config->clock_name); if (clock_dev == NULL) { return -EINVAL; } if (clock_control_get_rate(clock_dev, config->clock_subsys, &clock_freq)) { return -EINVAL; } DSPI_MasterInit(base, &master_config, clock_freq); DSPI_MasterTransferCreateHandle(base, &data->handle, spi_mcux_master_transfer_callback, dev); data->ctx.config = spi_cfg; spi_context_cs_configure(&data->ctx); return 0; } static int transceive(struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, struct k_poll_signal *signal) { struct spi_mcux_data *data = dev->driver_data; int ret; spi_context_lock(&data->ctx, asynchronous, signal); ret = spi_mcux_configure(dev, spi_cfg); if (ret) { goto out; } spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(&data->ctx, true); spi_mcux_transfer_next_packet(dev); ret = spi_context_wait_for_completion(&data->ctx); out: spi_context_release(&data->ctx, ret); return ret; } static int spi_mcux_transceive(struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_mcux_transceive_async(struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async); } #endif /* CONFIG_SPI_ASYNC */ static int spi_mcux_release(struct device *dev, const struct spi_config *spi_cfg) { struct spi_mcux_data *data = dev->driver_data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static int spi_mcux_init(struct device *dev) { const struct spi_mcux_config *config = dev->config->config_info; struct spi_mcux_data *data = dev->driver_data; config->irq_config_func(dev); spi_context_unlock_unconditionally(&data->ctx); return 0; } static const struct spi_driver_api spi_mcux_driver_api = { .transceive = spi_mcux_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_mcux_transceive_async, #endif .release = spi_mcux_release, }; #ifdef CONFIG_SPI_0 static void spi_mcux_config_func_0(struct device *dev); static const struct spi_mcux_config spi_mcux_config_0 = { .base = (SPI_Type *) CONFIG_SPI_0_BASE_ADDRESS, .clock_name = CONFIG_SPI_0_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) CONFIG_SPI_0_CLOCK_SUBSYS, .irq_config_func = spi_mcux_config_func_0, }; static struct spi_mcux_data spi_mcux_data_0 = { SPI_CONTEXT_INIT_LOCK(spi_mcux_data_0, ctx), SPI_CONTEXT_INIT_SYNC(spi_mcux_data_0, ctx), }; DEVICE_AND_API_INIT(spi_mcux_0, CONFIG_SPI_0_NAME, &spi_mcux_init, &spi_mcux_data_0, &spi_mcux_config_0, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &spi_mcux_driver_api); static void spi_mcux_config_func_0(struct device *dev) { IRQ_CONNECT(CONFIG_SPI_0_IRQ, CONFIG_SPI_0_IRQ_PRI, spi_mcux_isr, DEVICE_GET(spi_mcux_0), 0); irq_enable(CONFIG_SPI_0_IRQ); } #endif /* CONFIG_SPI_0 */ #ifdef CONFIG_SPI_1 static void spi_mcux_config_func_1(struct device *dev); static const struct spi_mcux_config spi_mcux_config_1 = { .base = (SPI_Type *) CONFIG_SPI_1_BASE_ADDRESS, .clock_name = CONFIG_SPI_1_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) CONFIG_SPI_1_CLOCK_SUBSYS, .irq_config_func = spi_mcux_config_func_1, }; static struct spi_mcux_data spi_mcux_data_1 = { SPI_CONTEXT_INIT_LOCK(spi_mcux_data_1, ctx), SPI_CONTEXT_INIT_SYNC(spi_mcux_data_1, ctx), }; DEVICE_AND_API_INIT(spi_mcux_1, CONFIG_SPI_1_NAME, &spi_mcux_init, &spi_mcux_data_1, &spi_mcux_config_1, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &spi_mcux_driver_api); static void spi_mcux_config_func_1(struct device *dev) { IRQ_CONNECT(CONFIG_SPI_1_IRQ, CONFIG_SPI_1_IRQ_PRI, spi_mcux_isr, DEVICE_GET(spi_mcux_1), 0); irq_enable(CONFIG_SPI_1_IRQ); } #endif /* CONFIG_SPI_1 */ #ifdef CONFIG_SPI_2 static void spi_mcux_config_func_2(struct device *dev); static const struct spi_mcux_config spi_mcux_config_2 = { .base = (SPI_Type *) CONFIG_SPI_2_BASE_ADDRESS, .clock_name = CONFIG_SPI_2_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) CONFIG_SPI_2_CLOCK_SUBSYS, .irq_config_func = spi_mcux_config_func_2, }; static struct spi_mcux_data spi_mcux_data_2 = { SPI_CONTEXT_INIT_LOCK(spi_mcux_data_2, ctx), SPI_CONTEXT_INIT_SYNC(spi_mcux_data_2, ctx), }; DEVICE_AND_API_INIT(spi_mcux_2, CONFIG_SPI_2_NAME, &spi_mcux_init, &spi_mcux_data_2, &spi_mcux_config_2, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &spi_mcux_driver_api); static void spi_mcux_config_func_2(struct device *dev) { IRQ_CONNECT(CONFIG_SPI_2_IRQ, CONFIG_SPI_2_IRQ_PRI, spi_mcux_isr, DEVICE_GET(spi_mcux_2), 0); irq_enable(CONFIG_SPI_2_IRQ); } #endif /* CONFIG_SPI_2 */