/* * Copyright (c) 2016-2017, Texas Instruments Incorporated * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include /* Driverlib includes */ #include #include #include #include #include struct uart_cc32xx_dev_data_t { #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_t cb; /**< Callback function pointer */ #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; #define DEV_CFG(dev) \ ((const struct uart_device_config * const)(dev)->config->config_info) #define DEV_DATA(dev) \ ((struct uart_cc32xx_dev_data_t * const)(dev)->driver_data) /* Forward decls: */ static struct device DEVICE_NAME_GET(uart_cc32xx_0); #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cc32xx_isr(void *arg); #endif static const struct uart_device_config uart_cc32xx_dev_cfg_0 = { .base = (void *)TI_CC32XX_UART_4000C000_BASE_ADDRESS, .sys_clk_freq = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC, }; static struct uart_cc32xx_dev_data_t uart_cc32xx_dev_data_0 = { #ifdef CONFIG_UART_INTERRUPT_DRIVEN .cb = NULL, #endif }; /* * CC32XX UART has a configurable FIFO length, from 1 to 8 characters. * However, the Zephyr console driver, and the Zephyr uart sample test, assume * a RX FIFO depth of one: meaning, one interrupt == one character received. * Keeping with this assumption, this driver leaves the FIFOs disabled, * and at depth 1. */ static int uart_cc32xx_init(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); MAP_PRCMPeripheralReset(PRCM_UARTA0); /* This also calls MAP_UARTEnable() to enable the FIFOs: */ MAP_UARTConfigSetExpClk((unsigned long)config->base, MAP_PRCMPeripheralClockGet(PRCM_UARTA0), TI_CC32XX_UART_4000C000_CURRENT_SPEED, (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE)); MAP_UARTFlowControlSet((unsigned long)config->base, UART_FLOWCONTROL_NONE); /* Re-disable the FIFOs: */ MAP_UARTFIFODisable((unsigned long)config->base); #ifdef CONFIG_UART_INTERRUPT_DRIVEN /* Clear any pending UART interrupts: we only care about RX, TX: */ MAP_UARTIntClear((unsigned long)config->base, (UART_INT_RX | UART_INT_TX)); IRQ_CONNECT(TI_CC32XX_UART_4000C000_IRQ_0, TI_CC32XX_UART_4000C000_IRQ_0_PRIORITY, uart_cc32xx_isr, DEVICE_GET(uart_cc32xx_0), 0); irq_enable(TI_CC32XX_UART_4000C000_IRQ_0); #endif return 0; } static int uart_cc32xx_poll_in(struct device *dev, unsigned char *c) { const struct uart_device_config *config = DEV_CFG(dev); if (MAP_UARTCharsAvail((unsigned long)config->base)) { *c = MAP_UARTCharGetNonBlocking((unsigned long)config->base); } else { return (-1); } return 0; } static unsigned char uart_cc32xx_poll_out(struct device *dev, unsigned char c) { const struct uart_device_config *config = DEV_CFG(dev); MAP_UARTCharPut((unsigned long)config->base, c); return c; } static int uart_cc32xx_err_check(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); unsigned long cc32xx_errs = 0L; unsigned int z_err = 0; cc32xx_errs = MAP_UARTRxErrorGet((unsigned long)config->base); /* Map cc32xx SDK uart.h defines to zephyr uart.h defines */ z_err = ((cc32xx_errs & UART_RXERROR_OVERRUN) ? UART_ERROR_OVERRUN : 0) | ((cc32xx_errs & UART_RXERROR_BREAK) ? UART_ERROR_BREAK : 0) | ((cc32xx_errs & UART_RXERROR_PARITY) ? UART_ERROR_PARITY : 0) | ((cc32xx_errs & UART_RXERROR_FRAMING) ? UART_ERROR_FRAMING : 0); MAP_UARTRxErrorClear((unsigned long)config->base); return (int)z_err; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_cc32xx_fifo_fill(struct device *dev, const u8_t *tx_data, int size) { const struct uart_device_config *config = DEV_CFG(dev); unsigned int num_tx = 0; while ((size - num_tx) > 0) { /* Send a character */ if (MAP_UARTCharPutNonBlocking((unsigned long)config->base, tx_data[num_tx])) { num_tx++; } else { break; } } return (int)num_tx; } static int uart_cc32xx_fifo_read(struct device *dev, u8_t *rx_data, const int size) { const struct uart_device_config *config = DEV_CFG(dev); unsigned int num_rx = 0; while (((size - num_rx) > 0) && MAP_UARTCharsAvail((unsigned long)config->base)) { /* Receive a character */ rx_data[num_rx++] = MAP_UARTCharGetNonBlocking((unsigned long)config->base); } return num_rx; } static void uart_cc32xx_irq_tx_enable(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); MAP_UARTIntEnable((unsigned long)config->base, UART_INT_TX); } static void uart_cc32xx_irq_tx_disable(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); MAP_UARTIntDisable((unsigned long)config->base, UART_INT_TX); } static int uart_cc32xx_irq_tx_ready(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); unsigned int int_status; int_status = MAP_UARTIntStatus((unsigned long)config->base, 1); return (int_status & UART_INT_TX); } static void uart_cc32xx_irq_rx_enable(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); /* FIFOs are left disabled from reset, so UART_INT_RT flag not used. */ MAP_UARTIntEnable((unsigned long)config->base, UART_INT_RX); } static void uart_cc32xx_irq_rx_disable(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); MAP_UARTIntDisable((unsigned long)config->base, UART_INT_RX); } static int uart_cc32xx_irq_tx_complete(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); return (!MAP_UARTBusy((unsigned long)config->base)); } static int uart_cc32xx_irq_rx_ready(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); unsigned int int_status; int_status = MAP_UARTIntStatus((unsigned long)config->base, 1); return (int_status & UART_INT_RX); } static void uart_cc32xx_irq_err_enable(struct device *dev) { /* Not yet used in zephyr */ } static void uart_cc32xx_irq_err_disable(struct device *dev) { /* Not yet used in zephyr */ } static int uart_cc32xx_irq_is_pending(struct device *dev) { const struct uart_device_config *config = DEV_CFG(dev); unsigned int int_status; int_status = MAP_UARTIntStatus((unsigned long)config->base, 1); return (int_status & (UART_INT_TX | UART_INT_RX)); } static int uart_cc32xx_irq_update(struct device *dev) { return 1; } static void uart_cc32xx_irq_callback_set(struct device *dev, uart_irq_callback_t cb) { struct uart_cc32xx_dev_data_t * const dev_data = DEV_DATA(dev); dev_data->cb = cb; } /** * @brief Interrupt service routine. * * This simply calls the callback function, if one exists. * * Note: CC32XX UART Tx interrupts when ready to send; Rx interrupts when char * received. * * @param arg Argument to ISR. * * @return N/A */ static void uart_cc32xx_isr(void *arg) { struct device *dev = arg; const struct uart_device_config *config = DEV_CFG(dev); struct uart_cc32xx_dev_data_t * const dev_data = DEV_DATA(dev); unsigned long intStatus = MAP_UARTIntStatus((unsigned long)config->base, 1); if (dev_data->cb) { dev_data->cb(dev); } /* * Clear interrupts only after cb called, as Zephyr UART clients expect * to check interrupt status during the callback. */ MAP_UARTIntClear((unsigned long)config->base, intStatus); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_driver_api uart_cc32xx_driver_api = { .poll_in = uart_cc32xx_poll_in, .poll_out = uart_cc32xx_poll_out, .err_check = uart_cc32xx_err_check, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_cc32xx_fifo_fill, .fifo_read = uart_cc32xx_fifo_read, .irq_tx_enable = uart_cc32xx_irq_tx_enable, .irq_tx_disable = uart_cc32xx_irq_tx_disable, .irq_tx_ready = uart_cc32xx_irq_tx_ready, .irq_rx_enable = uart_cc32xx_irq_rx_enable, .irq_rx_disable = uart_cc32xx_irq_rx_disable, .irq_tx_complete = uart_cc32xx_irq_tx_complete, .irq_rx_ready = uart_cc32xx_irq_rx_ready, .irq_err_enable = uart_cc32xx_irq_err_enable, .irq_err_disable = uart_cc32xx_irq_err_disable, .irq_is_pending = uart_cc32xx_irq_is_pending, .irq_update = uart_cc32xx_irq_update, .irq_callback_set = uart_cc32xx_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; DEVICE_AND_API_INIT(uart_cc32xx_0, CONFIG_UART_CC32XX_NAME, uart_cc32xx_init, &uart_cc32xx_dev_data_0, &uart_cc32xx_dev_cfg_0, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, (void *)&uart_cc32xx_driver_api);