/* * Copyright (c) 2019 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_INCLUDE_LIB_OS_HEAP_H_ #define ZEPHYR_INCLUDE_LIB_OS_HEAP_H_ /* * Internal heap APIs */ /* Theese validation checks are non-trivially expensive, so enable * only when debugging the heap code. They shouldn't be routine * assertions. */ #ifdef CONFIG_SYS_HEAP_VALIDATE #define CHECK(x) __ASSERT(x, "") #else #define CHECK(x) /**/ #endif /* Chunks are identified by their offset in 8 byte units from the * first address in the buffer (a zero-valued chunkid_t is used as a * null; that chunk would always point into the metadata at the start * of the heap and cannot be allocated). They are prefixed by a * variable size header that depends on the size of the heap. Heaps * with fewer than 2^15 units (256kb) of storage use shorts to store * the fields, otherwise the units are 32 bit integers for a 16Gb heap * space (larger spaces really aren't in scope for this code, but * could be handled similarly I suppose). Because of that design * there's a certain amount of boilerplate API needed to expose the * field accessors since we can't use natural syntax. * * The fields are: * LEFT_SIZE: The size of the left (next lower chunk in memory) * neighbor chunk. * SIZE_AND_USED: the total size (including header) of the chunk in * 8-byte units. The bottom bit stores a "used" flag. * FREE_PREV: Chunk ID of the previous node in a free list. * FREE_NEXT: Chunk ID of the next node in a free list. * * The free lists are circular lists, one for each power-of-two size * category. The free list pointers exist only for free chunks, * obviously. This memory is part of the user's buffer when * allocated. * * The field order is so that allocated buffers are immediately bounded * by SIZE_AND_USED of the current chunk at the bottom, and LEFT_SIZE of * the following chunk at the top. This ordering allows for quick buffer * overflow detection by testing left_chunk(c + chunk_size(c)) == c. */ enum chunk_fields { LEFT_SIZE, SIZE_AND_USED, FREE_PREV, FREE_NEXT }; #define CHUNK_UNIT 8U typedef struct { char bytes[CHUNK_UNIT]; } chunk_unit_t; /* big_heap needs uint32_t, small_heap needs uint16_t */ typedef uint32_t chunkid_t; typedef uint32_t chunksz_t; struct z_heap_bucket { chunkid_t next; }; struct z_heap { chunkid_t chunk0_hdr[2]; chunkid_t end_chunk; uint32_t avail_buckets; #ifdef CONFIG_SYS_HEAP_RUNTIME_STATS size_t free_bytes; size_t allocated_bytes; size_t max_allocated_bytes; #endif struct z_heap_bucket buckets[0]; }; static inline bool big_heap_chunks(chunksz_t chunks) { if (IS_ENABLED(CONFIG_SYS_HEAP_SMALL_ONLY)) { return false; } if (IS_ENABLED(CONFIG_SYS_HEAP_BIG_ONLY) || sizeof(void *) > 4U) { return true; } return chunks > 0x7fffU; } static inline bool big_heap_bytes(size_t bytes) { return big_heap_chunks(bytes / CHUNK_UNIT); } static inline bool big_heap(struct z_heap *h) { return big_heap_chunks(h->end_chunk); } static inline chunk_unit_t *chunk_buf(struct z_heap *h) { /* the struct z_heap matches with the first chunk */ return (chunk_unit_t *)h; } static inline chunkid_t chunk_field(struct z_heap *h, chunkid_t c, enum chunk_fields f) { chunk_unit_t *buf = chunk_buf(h); void *cmem = &buf[c]; if (big_heap(h)) { return ((uint32_t *)cmem)[f]; } else { return ((uint16_t *)cmem)[f]; } } static inline void chunk_set(struct z_heap *h, chunkid_t c, enum chunk_fields f, chunkid_t val) { CHECK(c <= h->end_chunk); chunk_unit_t *buf = chunk_buf(h); void *cmem = &buf[c]; if (big_heap(h)) { CHECK(val == (uint32_t)val); ((uint32_t *)cmem)[f] = val; } else { CHECK(val == (uint16_t)val); ((uint16_t *)cmem)[f] = val; } } static inline bool chunk_used(struct z_heap *h, chunkid_t c) { return chunk_field(h, c, SIZE_AND_USED) & 1U; } static inline chunksz_t chunk_size(struct z_heap *h, chunkid_t c) { return chunk_field(h, c, SIZE_AND_USED) >> 1; } static inline void set_chunk_used(struct z_heap *h, chunkid_t c, bool used) { chunk_unit_t *buf = chunk_buf(h); void *cmem = &buf[c]; if (big_heap(h)) { if (used) { ((uint32_t *)cmem)[SIZE_AND_USED] |= 1U; } else { ((uint32_t *)cmem)[SIZE_AND_USED] &= ~1U; } } else { if (used) { ((uint16_t *)cmem)[SIZE_AND_USED] |= 1U; } else { ((uint16_t *)cmem)[SIZE_AND_USED] &= ~1U; } } } /* * Note: no need to preserve the used bit here as the chunk is never in use * when its size is modified, and potential set_chunk_used() is always * invoked after set_chunk_size(). */ static inline void set_chunk_size(struct z_heap *h, chunkid_t c, chunksz_t size) { chunk_set(h, c, SIZE_AND_USED, size << 1); } static inline chunkid_t prev_free_chunk(struct z_heap *h, chunkid_t c) { return chunk_field(h, c, FREE_PREV); } static inline chunkid_t next_free_chunk(struct z_heap *h, chunkid_t c) { return chunk_field(h, c, FREE_NEXT); } static inline void set_prev_free_chunk(struct z_heap *h, chunkid_t c, chunkid_t prev) { chunk_set(h, c, FREE_PREV, prev); } static inline void set_next_free_chunk(struct z_heap *h, chunkid_t c, chunkid_t next) { chunk_set(h, c, FREE_NEXT, next); } static inline chunkid_t left_chunk(struct z_heap *h, chunkid_t c) { return c - chunk_field(h, c, LEFT_SIZE); } static inline chunkid_t right_chunk(struct z_heap *h, chunkid_t c) { return c + chunk_size(h, c); } static inline void set_left_chunk_size(struct z_heap *h, chunkid_t c, chunksz_t size) { chunk_set(h, c, LEFT_SIZE, size); } static inline bool solo_free_header(struct z_heap *h, chunkid_t c) { return big_heap(h) && (chunk_size(h, c) == 1U); } static inline size_t chunk_header_bytes(struct z_heap *h) { return big_heap(h) ? 8 : 4; } static inline size_t heap_footer_bytes(size_t size) { return big_heap_bytes(size) ? 8 : 4; } static inline chunksz_t chunksz(size_t bytes) { return (bytes + CHUNK_UNIT - 1U) / CHUNK_UNIT; } static inline chunksz_t bytes_to_chunksz(struct z_heap *h, size_t bytes) { return chunksz(chunk_header_bytes(h) + bytes); } static inline chunksz_t min_chunk_size(struct z_heap *h) { return bytes_to_chunksz(h, 1); } static inline size_t chunksz_to_bytes(struct z_heap *h, chunksz_t chunksz_in) { return chunksz_in * CHUNK_UNIT - chunk_header_bytes(h); } static inline int bucket_idx(struct z_heap *h, chunksz_t sz) { unsigned int usable_sz = sz - min_chunk_size(h) + 1; return 31 - __builtin_clz(usable_sz); } static inline bool size_too_big(struct z_heap *h, size_t bytes) { /* * Quick check to bail out early if size is too big. * Also guards against potential arithmetic overflows elsewhere. */ return (bytes / CHUNK_UNIT) >= h->end_chunk; } static inline void get_alloc_info(struct z_heap *h, size_t *alloc_bytes, size_t *free_bytes) { chunkid_t c; *alloc_bytes = 0; *free_bytes = 0; for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) { if (chunk_used(h, c)) { *alloc_bytes += chunksz_to_bytes(h, chunk_size(h, c)); } else if (!solo_free_header(h, c)) { *free_bytes += chunksz_to_bytes(h, chunk_size(h, c)); } } } #endif /* ZEPHYR_INCLUDE_LIB_OS_HEAP_H_ */