/* * Copyright (c) 2017, NXP * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #define LOG_LEVEL CONFIG_PWM_LOG_LEVEL #include LOG_MODULE_REGISTER(pwm_mcux_ftm); #define MAX_CHANNELS ARRAY_SIZE(FTM0->CONTROLS) struct mcux_ftm_config { FTM_Type *base; char *clock_name; clock_control_subsys_t clock_subsys; ftm_clock_source_t ftm_clock_source; ftm_clock_prescale_t prescale; u8_t channel_count; ftm_pwm_mode_t mode; }; struct mcux_ftm_data { u32_t clock_freq; u32_t period_cycles; ftm_chnl_pwm_signal_param_t channel[MAX_CHANNELS]; }; static int mcux_ftm_pin_set(struct device *dev, u32_t pwm, u32_t period_cycles, u32_t pulse_cycles) { const struct mcux_ftm_config *config = dev->config->config_info; struct mcux_ftm_data *data = dev->driver_data; u8_t duty_cycle; if ((period_cycles == 0U) || (pulse_cycles > period_cycles)) { LOG_ERR("Invalid combination: period_cycles=%d, " "pulse_cycles=%d", period_cycles, pulse_cycles); return -EINVAL; } if (pwm >= config->channel_count) { LOG_ERR("Invalid channel"); return -ENOTSUP; } duty_cycle = pulse_cycles * 100U / period_cycles; data->channel[pwm].dutyCyclePercent = duty_cycle; LOG_DBG("pulse_cycles=%d, period_cycles=%d, duty_cycle=%d", pulse_cycles, period_cycles, duty_cycle); if (period_cycles != data->period_cycles) { u32_t pwm_freq; status_t status; LOG_WRN("Changing period cycles from %d to %d" " affects all %d channels in %s", data->period_cycles, period_cycles, config->channel_count, dev->config->name); data->period_cycles = period_cycles; pwm_freq = (data->clock_freq >> config->prescale) / period_cycles; LOG_DBG("pwm_freq=%d, clock_freq=%d", pwm_freq, data->clock_freq); if (pwm_freq == 0U) { LOG_ERR("Could not set up pwm_freq=%d", pwm_freq); return -EINVAL; } FTM_StopTimer(config->base); status = FTM_SetupPwm(config->base, data->channel, config->channel_count, config->mode, pwm_freq, data->clock_freq); if (status != kStatus_Success) { LOG_ERR("Could not set up pwm"); return -ENOTSUP; } FTM_SetSoftwareTrigger(config->base, true); FTM_StartTimer(config->base, config->ftm_clock_source); } else { FTM_UpdatePwmDutycycle(config->base, pwm, config->mode, duty_cycle); FTM_SetSoftwareTrigger(config->base, true); } return 0; } static int mcux_ftm_get_cycles_per_sec(struct device *dev, u32_t pwm, u64_t *cycles) { const struct mcux_ftm_config *config = dev->config->config_info; struct mcux_ftm_data *data = dev->driver_data; *cycles = data->clock_freq >> config->prescale; return 0; } static int mcux_ftm_init(struct device *dev) { const struct mcux_ftm_config *config = dev->config->config_info; struct mcux_ftm_data *data = dev->driver_data; ftm_chnl_pwm_signal_param_t *channel = data->channel; struct device *clock_dev; ftm_config_t ftm_config; int i; if (config->channel_count > ARRAY_SIZE(data->channel)) { LOG_ERR("Invalid channel count"); return -EINVAL; } clock_dev = device_get_binding(config->clock_name); if (clock_dev == NULL) { LOG_ERR("Could not get clock device"); return -EINVAL; } if (clock_control_get_rate(clock_dev, config->clock_subsys, &data->clock_freq)) { LOG_ERR("Could not get clock frequency"); return -EINVAL; } for (i = 0; i < config->channel_count; i++) { channel->chnlNumber = i; channel->level = kFTM_LowTrue; channel->dutyCyclePercent = 0; channel->firstEdgeDelayPercent = 0; channel++; } FTM_GetDefaultConfig(&ftm_config); ftm_config.prescale = config->prescale; FTM_Init(config->base, &ftm_config); return 0; } static const struct pwm_driver_api mcux_ftm_driver_api = { .pin_set = mcux_ftm_pin_set, .get_cycles_per_sec = mcux_ftm_get_cycles_per_sec, }; #ifdef CONFIG_PWM_0 static const struct mcux_ftm_config mcux_ftm_config_0 = { .base = (FTM_Type *)DT_FTM_0_BASE_ADDRESS, .clock_name = DT_FTM_0_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) DT_FTM_0_CLOCK_SUBSYS, .ftm_clock_source = kFTM_FixedClock, .prescale = kFTM_Prescale_Divide_16, .channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn(FTM0), .mode = kFTM_EdgeAlignedPwm, }; static struct mcux_ftm_data mcux_ftm_data_0; DEVICE_AND_API_INIT(mcux_ftm_0, DT_FTM_0_NAME, &mcux_ftm_init, &mcux_ftm_data_0, &mcux_ftm_config_0, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &mcux_ftm_driver_api); #endif /* CONFIG_PWM_0 */ #ifdef CONFIG_PWM_1 static const struct mcux_ftm_config mcux_ftm_config_1 = { .base = (FTM_Type *)DT_FTM_1_BASE_ADDRESS, .clock_name = DT_FTM_1_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) DT_FTM_1_CLOCK_SUBSYS, .ftm_clock_source = kFTM_FixedClock, .prescale = kFTM_Prescale_Divide_16, .channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn(FTM1), .mode = kFTM_EdgeAlignedPwm, }; static struct mcux_ftm_data mcux_ftm_data_1; DEVICE_AND_API_INIT(mcux_ftm_1, DT_FTM_1_NAME, &mcux_ftm_init, &mcux_ftm_data_1, &mcux_ftm_config_1, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &mcux_ftm_driver_api); #endif /* CONFIG_PWM_1 */ #ifdef CONFIG_PWM_2 static const struct mcux_ftm_config mcux_ftm_config_2 = { .base = (FTM_Type *)DT_FTM_2_BASE_ADDRESS, .clock_name = DT_FTM_2_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) DT_FTM_2_CLOCK_SUBSYS, .ftm_clock_source = kFTM_FixedClock, .prescale = kFTM_Prescale_Divide_16, .channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn(FTM2), .mode = kFTM_EdgeAlignedPwm, }; static struct mcux_ftm_data mcux_ftm_data_2; DEVICE_AND_API_INIT(mcux_ftm_2, DT_FTM_2_NAME, &mcux_ftm_init, &mcux_ftm_data_2, &mcux_ftm_config_2, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &mcux_ftm_driver_api); #endif /* CONFIG_PWM_2 */ #ifdef CONFIG_PWM_3 static const struct mcux_ftm_config mcux_ftm_config_3 = { .base = (FTM_Type *)DT_FTM_3_BASE_ADDRESS, .clock_name = DT_FTM_3_CLOCK_NAME, .clock_subsys = (clock_control_subsys_t) DT_FTM_3_CLOCK_SUBSYS, .ftm_clock_source = kFTM_FixedClock, .prescale = kFTM_Prescale_Divide_16, .channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn(FTM3), .mode = kFTM_EdgeAlignedPwm, }; static struct mcux_ftm_data mcux_ftm_data_3; DEVICE_AND_API_INIT(mcux_ftm_3, DT_FTM_3_NAME, &mcux_ftm_init, &mcux_ftm_data_3, &mcux_ftm_config_3, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &mcux_ftm_driver_api); #endif /* CONFIG_PWM_3 */