/* * Copyright (c) 2024 Renesas Electronics Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include "r_gpt.h" #include "r_gpt_cfg.h" #include #include LOG_MODULE_REGISTER(pwm_renesas_ra8, CONFIG_PWM_LOG_LEVEL); #define DT_DRV_COMPAT renesas_ra8_pwm #define MAX_PIN 2U #define GPT_PRV_GTIO_HIGH_COMPARE_MATCH_LOW_CYCLE_END 0x6U #define GPT_PRV_GTIO_LOW_COMPARE_MATCH_HIGH_CYCLE_END 0x9U #define GPT_PRV_GTIOR_INITIAL_LEVEL_BIT 4 #define GPT_PRV_GTIO_TOGGLE_COMPARE_MATCH 0x3U struct pwm_ra8_capture_data { pwm_capture_callback_handler_t callback; void *user_data; uint64_t period; uint64_t pulse; bool is_pulse_capture; bool is_busy; uint32_t overflows; bool continuous; }; struct pwm_ra8_data { gpt_instance_ctrl_t fsp_ctrl; timer_cfg_t fsp_cfg; gpt_extended_cfg_t extend_cfg; uint16_t capture_a_event; uint16_t overflow_event; #ifdef CONFIG_PWM_CAPTURE struct pwm_ra8_capture_data capture; #endif /* CONFIG_PWM_CAPTURE */ }; struct pwm_ra8_config { const struct device *clock_dev; struct clock_control_ra_subsys_cfg clock_subsys; const struct pinctrl_dev_config *pincfg; }; static uint32_t pwm_ra8_gtior_calculate(gpt_pin_level_t const stop_level) { /* The stop level is used as both the initial level and the stop level. */ uint32_t gtior = R_GPT0_GTIOR_OAE_Msk | ((uint32_t)stop_level << R_GPT0_GTIOR_OADFLT_Pos) | ((uint32_t)stop_level << GPT_PRV_GTIOR_INITIAL_LEVEL_BIT); uint32_t gtion = GPT_PRV_GTIO_LOW_COMPARE_MATCH_HIGH_CYCLE_END; /* Calculate the gtior value for PWM mode only */ gtior |= gtion; return gtior; } static int pwm_ra8_apply_gtior_config(gpt_instance_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg) { gpt_extended_cfg_t *p_extend = (gpt_extended_cfg_t *)p_cfg->p_extend; uint32_t gtior = p_extend->gtior_setting.gtior; #if GPT_CFG_OUTPUT_SUPPORT_ENABLE /* Check if custom GTIOR settings are provided. */ if (p_extend->gtior_setting.gtior == 0) { /* If custom GTIOR settings are not provided, calculate GTIOR. */ if (p_extend->gtioca.output_enabled) { uint32_t gtioca_gtior = pwm_ra8_gtior_calculate(p_extend->gtioca.stop_level); gtior |= gtioca_gtior << R_GPT0_GTIOR_GTIOA_Pos; } if (p_extend->gtiocb.output_enabled) { uint32_t gtiocb_gtior = pwm_ra8_gtior_calculate(p_extend->gtiocb.stop_level); gtior |= gtiocb_gtior << R_GPT0_GTIOR_GTIOB_Pos; } } #endif #if GPT_PRV_EXTRA_FEATURES_ENABLED == GPT_CFG_OUTPUT_SUPPORT_ENABLE gpt_extended_pwm_cfg_t const *p_pwm_cfg = p_extend->p_pwm_cfg; if (NULL != p_pwm_cfg) { /* Check if custom GTIOR settings are provided. */ if (p_extend->gtior_setting.gtior == 0) { /* If custom GTIOR settings are not provided, set gtioca_disable_settings * and gtiocb_disable_settings. */ gtior |= (uint32_t)(p_pwm_cfg->gtioca_disable_setting << R_GPT0_GTIOR_OADF_Pos); gtior |= (uint32_t)(p_pwm_cfg->gtiocb_disable_setting << R_GPT0_GTIOR_OBDF_Pos); } } #endif /* Check if custom GTIOR settings are provided. */ if (p_extend->gtior_setting.gtior == 0) { /* * If custom GTIOR settings are not provided, configure the noise filter for * the GTIOC pins. */ gtior |= (uint32_t)(p_extend->capture_filter_gtioca << R_GPT0_GTIOR_NFAEN_Pos); gtior |= (uint32_t)(p_extend->capture_filter_gtiocb << R_GPT0_GTIOR_NFBEN_Pos); } /* Set the I/O control register. */ p_ctrl->p_reg->GTIOR = gtior; return 0; } static int pwm_ra8_set_cycles(const struct device *dev, uint32_t pin, uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags) { struct pwm_ra8_data *data = dev->data; uint32_t pulse; fsp_err_t err; if (pin >= MAX_PIN) { LOG_ERR("Only valid for gtioca and gtiocb pins"); return -EINVAL; } if ((data->fsp_ctrl.variant == TIMER_VARIANT_16_BIT && period_cycles > UINT16_MAX) || (data->fsp_ctrl.variant == TIMER_VARIANT_32_BIT && period_cycles > UINT32_MAX)) { LOG_ERR("Out of range period cycles are not valid"); return -EINVAL; } /* gtioca and gtiocb setting */ if (pin == GPT_IO_PIN_GTIOCA) { data->extend_cfg.gtioca.output_enabled = true; } else { data->extend_cfg.gtiocb.output_enabled = true; } pulse = (flags & PWM_POLARITY_INVERTED) ? period_cycles - pulse_cycles : pulse_cycles; /* Apply gtio output setting */ pwm_ra8_apply_gtior_config(&data->fsp_ctrl, &data->fsp_cfg); /* Stop timer */ err = R_GPT_Stop(&data->fsp_ctrl); if (err != FSP_SUCCESS) { return -EIO; } /* Update period cycles, reflected at an overflow */ err = R_GPT_PeriodSet(&data->fsp_ctrl, period_cycles); if (err != FSP_SUCCESS) { return -EIO; } /* Update pulse cycles, reflected at an overflow */ err = R_GPT_DutyCycleSet(&data->fsp_ctrl, pulse, pin); if (err != FSP_SUCCESS) { return -EIO; } /* Start timer */ err = R_GPT_Start(&data->fsp_ctrl); if (err != FSP_SUCCESS) { return -EIO; } LOG_DBG("channel %u, pin %u, pulse %u, period %u, prescaler: %u.", data->fsp_cfg.channel, pin, pulse_cycles, period_cycles, data->fsp_cfg.source_div); return 0; }; static int pwm_ra8_get_cycles_per_sec(const struct device *dev, uint32_t pin, uint64_t *cycles) { struct pwm_ra8_data *data = dev->data; timer_info_t info; fsp_err_t err; if (pin >= MAX_PIN) { LOG_ERR("Only valid for gtioca and gtiocb pins"); return -EINVAL; } err = R_GPT_InfoGet(&data->fsp_ctrl, &info); if (err != FSP_SUCCESS) { return -EIO; } *cycles = (uint64_t)info.clock_frequency; return 0; }; #ifdef CONFIG_PWM_CAPTURE extern void gpt_capture_compare_a_isr(void); extern void gpt_counter_overflow_isr(void); static void enable_irq(IRQn_Type const irq, uint32_t priority, void *p_context) { if (irq >= 0) { R_BSP_IrqCfgEnable(irq, priority, p_context); } } static void disable_irq(IRQn_Type irq) { /* Disable interrupts. */ if (irq >= 0) { R_BSP_IrqDisable(irq); R_FSP_IsrContextSet(irq, NULL); } } static int pwm_ra8_configure_capture(const struct device *dev, uint32_t pin, pwm_flags_t flags, pwm_capture_callback_handler_t cb, void *user_data) { struct pwm_ra8_data *data = dev->data; if (pin != GPT_IO_PIN_GTIOCA) { LOG_ERR("Feature only support for gtioca"); return -EINVAL; } if (!(flags & PWM_CAPTURE_TYPE_MASK)) { LOG_ERR("No PWWM capture type specified"); return -EINVAL; } if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) { LOG_ERR("Cannot capture both period and pulse width"); return -ENOTSUP; } if (data->capture.is_busy) { LOG_ERR("Capture already active on this pin"); return -EBUSY; } if (flags & PWM_CAPTURE_TYPE_PERIOD) { data->capture.is_pulse_capture = false; if (flags & PWM_POLARITY_INVERTED) { data->extend_cfg.start_source = (gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW | GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH | GPT_SOURCE_NONE); data->extend_cfg.capture_a_source = data->extend_cfg.start_source; } else { data->extend_cfg.start_source = (gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW | GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH | GPT_SOURCE_NONE); data->extend_cfg.capture_a_source = data->extend_cfg.start_source; } } else { data->capture.is_pulse_capture = true; if (flags & PWM_POLARITY_INVERTED) { data->extend_cfg.start_source = (gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW | GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH | GPT_SOURCE_NONE); data->extend_cfg.capture_a_source = (gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW | GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH | GPT_SOURCE_NONE); } else { data->extend_cfg.start_source = (gpt_source_t)(GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_LOW | GPT_SOURCE_GTIOCA_RISING_WHILE_GTIOCB_HIGH | GPT_SOURCE_NONE); data->extend_cfg.capture_a_source = (gpt_source_t)(GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_LOW | GPT_SOURCE_GTIOCA_FALLING_WHILE_GTIOCB_HIGH | GPT_SOURCE_NONE); } } data->capture.callback = cb; data->capture.user_data = user_data; data->capture.continuous = flags & PWM_CAPTURE_MODE_CONTINUOUS; if (data->capture.continuous) { data->extend_cfg.stop_source = data->extend_cfg.capture_a_source; data->extend_cfg.clear_source = data->extend_cfg.start_source; } else { data->extend_cfg.stop_source = (gpt_source_t)(GPT_SOURCE_NONE); data->extend_cfg.clear_source = (gpt_source_t)(GPT_SOURCE_NONE); } return 0; } static int pwm_ra8_enable_capture(const struct device *dev, uint32_t pin) { struct pwm_ra8_data *data = dev->data; fsp_err_t err; if (pin != GPT_IO_PIN_GTIOCA) { LOG_ERR("Feature only support for gtioca"); return -EINVAL; } if (data->capture.is_busy) { LOG_ERR("Capture already active on this pin"); return -EBUSY; } if (!data->capture.callback) { LOG_ERR("PWM capture not configured"); return -EINVAL; } data->capture.is_busy = true; /* Enable capture source */ err = R_GPT_Enable(&data->fsp_ctrl); if (err != FSP_SUCCESS) { return -EIO; } /* Enable interruption */ enable_irq(data->fsp_cfg.cycle_end_irq, data->fsp_cfg.cycle_end_irq, &data->fsp_ctrl); enable_irq(data->extend_cfg.capture_a_irq, data->extend_cfg.capture_a_ipl, &data->fsp_ctrl); R_ICU->IELSR[data->fsp_cfg.cycle_end_irq] = (elc_event_t)data->overflow_event; R_ICU->IELSR[data->extend_cfg.capture_a_irq] = (elc_event_t)data->capture_a_event; return 0; } static int pwm_ra8_disable_capture(const struct device *dev, uint32_t pin) { struct pwm_ra8_data *data = dev->data; fsp_err_t err; if (pin != GPT_IO_PIN_GTIOCA) { LOG_ERR("Feature only support for gtioca"); return -EINVAL; } data->capture.is_busy = false; /* Disable interruption */ disable_irq(data->fsp_cfg.cycle_end_irq); disable_irq(data->extend_cfg.capture_a_irq); R_ICU->IELSR[data->fsp_cfg.cycle_end_irq] = (elc_event_t)ELC_EVENT_NONE; R_ICU->IELSR[data->extend_cfg.capture_a_irq] = (elc_event_t)ELC_EVENT_NONE; /* Disable capture source */ err = R_GPT_Disable(&data->fsp_ctrl); if (err != FSP_SUCCESS) { return -EIO; } /* Stop timer */ err = R_GPT_Stop(&data->fsp_ctrl); if (err != FSP_SUCCESS) { return -EIO; } /* Clear timer */ err = R_GPT_Reset(&data->fsp_ctrl); if (err != FSP_SUCCESS) { return -EIO; } return 0; } static void fsp_callback(timer_callback_args_t *p_args) { const struct device *dev = p_args->p_context; struct pwm_ra8_data *data = dev->data; timer_info_t info; (void)R_GPT_InfoGet(&data->fsp_ctrl, &info); uint64_t period = info.period_counts; /* The maximum period is one more than the maximum 16,32-bit number, but will be reflected * as 0 */ if (period == 0U) { if (data->fsp_ctrl.variant == TIMER_VARIANT_16_BIT) { period = UINT16_MAX + 1U; } else { period = UINT32_MAX + 1U; } } /* Capture event */ if (p_args->event == TIMER_EVENT_CAPTURE_A) { if (p_args->capture != 0U) { if (data->capture.is_pulse_capture == true) { data->capture.pulse = (data->capture.overflows * period) + p_args->capture; data->capture.callback(dev, GPT_IO_PIN_GTIOCA, 0, data->capture.pulse, 0, data->capture.user_data); } else { data->capture.period = (data->capture.overflows * period) + p_args->capture; data->capture.callback(dev, GPT_IO_PIN_GTIOCA, data->capture.period, 0, 0, data->capture.user_data); } data->capture.overflows = 0U; /* Disable capture in single mode */ if (data->capture.continuous == false) { pwm_ra8_disable_capture(dev, GPT_IO_PIN_GTIOCA); } } } else if (p_args->event == TIMER_EVENT_CYCLE_END) { data->capture.overflows++; } else { data->capture.callback(dev, GPT_IO_PIN_GTIOCA, 0, 0, -ECANCELED, data->capture.user_data); } } #endif /* CONFIG_PWM_CAPTURE */ static const struct pwm_driver_api pwm_ra8_driver_api = { .get_cycles_per_sec = pwm_ra8_get_cycles_per_sec, .set_cycles = pwm_ra8_set_cycles, #ifdef CONFIG_PWM_CAPTURE .configure_capture = pwm_ra8_configure_capture, .enable_capture = pwm_ra8_enable_capture, .disable_capture = pwm_ra8_disable_capture, #endif /* CONFIG_PWM_CAPTURE */ }; static int pwm_ra8_init(const struct device *dev) { struct pwm_ra8_data *data = dev->data; const struct pwm_ra8_config *cfg = dev->config; int err; if (!device_is_ready(cfg->clock_dev)) { LOG_ERR("clock control device not ready"); return -ENODEV; } err = clock_control_on(cfg->clock_dev, (clock_control_subsys_t)&cfg->clock_subsys); if (err < 0) { LOG_ERR("Could not initialize clock (%d)", err); return err; } err = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT); if (err) { LOG_ERR("Failed to configure pins for PWM (%d)", err); return err; } #if defined(CONFIG_PWM_CAPTURE) data->fsp_cfg.p_callback = fsp_callback; data->fsp_cfg.p_context = dev; #endif /* defined(CONFIG_PWM_CAPTURE) */ data->fsp_cfg.p_extend = &data->extend_cfg; err = R_GPT_Open(&data->fsp_ctrl, &data->fsp_cfg); if (err != FSP_SUCCESS) { return -EIO; } return 0; } #define _ELC_EVENT_GPT_CAPTURE_COMPARE_A(channel) ELC_EVENT_GPT##channel##_CAPTURE_COMPARE_A #define _ELC_EVENT_GPT_COUNTER_OVERFLOW(channel) ELC_EVENT_GPT##channel##_COUNTER_OVERFLOW #define ELC_EVENT_GPT_CAPTURE_COMPARE_A(channel) _ELC_EVENT_GPT_CAPTURE_COMPARE_A(channel) #define ELC_EVENT_GPT_COUNTER_OVERFLOW(channel) _ELC_EVENT_GPT_COUNTER_OVERFLOW(channel) #ifdef CONFIG_PWM_CAPTURE #define PWM_RA_IRQ_CONFIG_INIT(index) \ do { \ \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, gtioca, irq), \ DT_INST_IRQ_BY_NAME(index, gtioca, priority), \ gpt_capture_compare_a_isr, NULL, 0); \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, overflow, irq), \ DT_INST_IRQ_BY_NAME(index, overflow, priority), \ gpt_counter_overflow_isr, NULL, 0); \ } while (0) #else #define PWM_RA_IRQ_CONFIG_INIT(index) #endif /* CONFIG_PWM_CAPTURE */ #define PWM_RA8_INIT(index) \ PINCTRL_DT_INST_DEFINE(index); \ static const gpt_extended_cfg_t g_timer1_extend_##index = { \ .gtioca = \ { \ .output_enabled = false, \ .stop_level = GPT_PIN_LEVEL_LOW, \ }, \ .gtiocb = \ { \ .output_enabled = false, \ .stop_level = GPT_PIN_LEVEL_LOW, \ }, \ .start_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .stop_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .clear_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .count_up_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .count_down_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .capture_a_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .capture_b_source = (gpt_source_t)(GPT_SOURCE_NONE), \ .capture_a_ipl = DT_INST_IRQ_BY_NAME(index, gtioca, priority), \ .capture_b_ipl = BSP_IRQ_DISABLED, \ .capture_a_irq = DT_INST_IRQ_BY_NAME(index, gtioca, irq), \ .capture_b_irq = FSP_INVALID_VECTOR, \ .capture_filter_gtioca = GPT_CAPTURE_FILTER_NONE, \ .capture_filter_gtiocb = GPT_CAPTURE_FILTER_NONE, \ .p_pwm_cfg = NULL, \ .gtior_setting.gtior = (0x0U), \ }; \ static struct pwm_ra8_data pwm_ra8_data_##index = { \ .fsp_cfg = \ { \ .mode = TIMER_MODE_PWM, \ .source_div = DT_INST_PROP(index, divider), \ .channel = DT_INST_PROP(index, channel), \ .cycle_end_ipl = DT_INST_IRQ_BY_NAME(index, overflow, priority), \ .cycle_end_irq = DT_INST_IRQ_BY_NAME(index, overflow, irq), \ }, \ .extend_cfg = g_timer1_extend_##index, \ .capture_a_event = ELC_EVENT_GPT_CAPTURE_COMPARE_A(DT_INST_PROP(index, channel)), \ .overflow_event = ELC_EVENT_GPT_COUNTER_OVERFLOW(DT_INST_PROP(index, channel)), \ }; \ static const struct pwm_ra8_config pwm_ra8_config_##index = { \ .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(index)), \ .clock_subsys = { \ .mstp = (uint32_t)DT_INST_CLOCKS_CELL_BY_IDX(index, 0, mstp), \ .stop_bit = DT_INST_CLOCKS_CELL_BY_IDX(index, 0, stop_bit), \ }}; \ static int pwm_ra8_init_##index(const struct device *dev) \ { \ PWM_RA_IRQ_CONFIG_INIT(index); \ int err = pwm_ra8_init(dev); \ if (err != 0) { \ return err; \ } \ return 0; \ } \ DEVICE_DT_INST_DEFINE(index, pwm_ra8_init_##index, NULL, &pwm_ra8_data_##index, \ &pwm_ra8_config_##index, POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \ &pwm_ra8_driver_api); DT_INST_FOREACH_STATUS_OKAY(PWM_RA8_INIT);