/* * Copyright (c) 2017 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nordic_nrf_sw_pwm #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(pwm_nrf_sw, CONFIG_PWM_LOG_LEVEL); #define GENERATOR_NODE DT_INST_PHANDLE(0, generator) #define GENERATOR_CC_NUM DT_PROP(GENERATOR_NODE, cc_num) #if DT_NODE_HAS_COMPAT(GENERATOR_NODE, nordic_nrf_rtc) #define USE_RTC 1 #define GENERATOR_ADDR ((NRF_RTC_Type *) DT_REG_ADDR(GENERATOR_NODE)) #define GENERATOR_BITS 24 BUILD_ASSERT(DT_INST_PROP(0, clock_prescaler) == 0, "Only clock-prescaler = <0> is supported when used with RTC"); #else #define USE_RTC 0 #define GENERATOR_ADDR ((NRF_TIMER_Type *) DT_REG_ADDR(GENERATOR_NODE)) #define GENERATOR_BITS DT_PROP(GENERATOR_NODE, max_bit_width) #endif #define PWM_0_MAP_SIZE DT_INST_PROP_LEN(0, channel_gpios) /* One compare channel is needed to set the PWM period, hence +1. */ #if ((PWM_0_MAP_SIZE + 1) > GENERATOR_CC_NUM) #error "Invalid number of PWM channels configured." #endif #if defined(PPI_FEATURE_FORKS_PRESENT) || defined(DPPI_PRESENT) #define PPI_FORK_AVAILABLE 1 #else #define PPI_FORK_AVAILABLE 0 #endif /* When RTC is used, one more PPI task endpoint is required for clearing * the counter, so when FORK feature is not available, one more PPI channel * needs to be used. */ #if USE_RTC && !PPI_FORK_AVAILABLE #define PPI_PER_CH 3 #else #define PPI_PER_CH 2 #endif struct pwm_config { union { NRF_RTC_Type *rtc; NRF_TIMER_Type *timer; }; nrfx_gpiote_t gpiote[PWM_0_MAP_SIZE]; uint8_t psel_ch[PWM_0_MAP_SIZE]; uint8_t initially_inverted; uint8_t map_size; uint8_t prescaler; }; struct pwm_data { uint32_t period_cycles; uint32_t pulse_cycles[PWM_0_MAP_SIZE]; uint8_t ppi_ch[PWM_0_MAP_SIZE][PPI_PER_CH]; uint8_t gpiote_ch[PWM_0_MAP_SIZE]; }; static inline NRF_RTC_Type *pwm_config_rtc(const struct pwm_config *config) { #if USE_RTC return config->rtc; #else return NULL; #endif } static inline NRF_TIMER_Type *pwm_config_timer(const struct pwm_config *config) { #if !USE_RTC return config->timer; #else return NULL; #endif } static uint32_t pwm_period_check(struct pwm_data *data, uint8_t map_size, uint32_t channel, uint32_t period_cycles, uint32_t pulse_cycles) { uint8_t i; /* allow 0% and 100% duty cycle, as it does not use PWM. */ if ((pulse_cycles == 0U) || (pulse_cycles == period_cycles)) { return 0; } /* fail if requested period does not match already running period */ for (i = 0U; i < map_size; i++) { if ((i != channel) && (data->pulse_cycles[i] != 0U) && (period_cycles != data->period_cycles)) { return -EINVAL; } } return 0; } static int pwm_nrf_sw_set_cycles(const struct device *dev, uint32_t channel, uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags) { const struct pwm_config *config = dev->config; NRF_TIMER_Type *timer = pwm_config_timer(config); NRF_RTC_Type *rtc = pwm_config_rtc(config); NRF_GPIOTE_Type *gpiote; struct pwm_data *data = dev->data; uint32_t ppi_mask; uint8_t active_level; uint8_t psel_ch; uint8_t gpiote_ch; const uint8_t *ppi_chs; int ret; if (channel >= config->map_size) { LOG_ERR("Invalid channel: %u.", channel); return -EINVAL; } /* check if requested period is allowed while other channels are * active. */ ret = pwm_period_check(data, config->map_size, channel, period_cycles, pulse_cycles); if (ret) { LOG_ERR("Incompatible period"); return ret; } if (USE_RTC) { /* pulse_cycles - 1 is written to 24-bit CC */ if (period_cycles > BIT_MASK(24) + 1) { LOG_ERR("Too long period (%u)!", period_cycles); return -EINVAL; } } else { if (GENERATOR_BITS < 32 && period_cycles > BIT_MASK(GENERATOR_BITS)) { LOG_ERR("Too long period (%u), adjust PWM prescaler!", period_cycles); return -EINVAL; } } gpiote = config->gpiote[channel].p_reg; psel_ch = config->psel_ch[channel]; gpiote_ch = data->gpiote_ch[channel]; ppi_chs = data->ppi_ch[channel]; LOG_DBG("channel %u, period %u, pulse %u", channel, period_cycles, pulse_cycles); /* clear PPI used */ ppi_mask = BIT(ppi_chs[0]) | BIT(ppi_chs[1]) | (PPI_PER_CH > 2 ? BIT(ppi_chs[2]) : 0); nrfx_gppi_channels_disable(ppi_mask); active_level = (flags & PWM_POLARITY_INVERTED) ? 0 : 1; /* * If the duty cycle is 0% or 100%, there is no need to generate * the PWM signal, just keep the output pin in inactive or active * state, respectively. */ if (pulse_cycles == 0 || pulse_cycles == period_cycles) { nrf_gpio_pin_write(psel_ch, pulse_cycles == 0 ? !active_level : active_level); /* clear GPIOTE config */ nrf_gpiote_te_default(gpiote, gpiote_ch); /* No PWM generation for this channel. */ data->pulse_cycles[channel] = 0U; /* Check if PWM signal is generated on any channel. */ for (uint8_t i = 0; i < config->map_size; i++) { if (data->pulse_cycles[i]) { return 0; } } /* No PWM generation needed, stop the timer. */ if (USE_RTC) { nrf_rtc_task_trigger(rtc, NRF_RTC_TASK_STOP); } else { nrf_timer_task_trigger(timer, NRF_TIMER_TASK_STOP); } return 0; } /* configure RTC / TIMER */ if (USE_RTC) { nrf_rtc_event_clear(rtc, nrf_rtc_compare_event_get(1 + channel)); nrf_rtc_event_clear(rtc, nrf_rtc_compare_event_get(0)); /* * '- 1' adjusts pulse and period cycles to the fact that CLEAR * task event is generated always one LFCLK cycle after period * COMPARE value is reached. */ nrf_rtc_cc_set(rtc, 1 + channel, pulse_cycles - 1); nrf_rtc_cc_set(rtc, 0, period_cycles - 1); nrf_rtc_task_trigger(rtc, NRF_RTC_TASK_CLEAR); } else { nrf_timer_event_clear(timer, nrf_timer_compare_event_get(1 + channel)); nrf_timer_event_clear(timer, nrf_timer_compare_event_get(0)); nrf_timer_cc_set(timer, 1 + channel, pulse_cycles); nrf_timer_cc_set(timer, 0, period_cycles); nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR); } /* Configure GPIOTE - toggle task with proper initial output value. */ gpiote->CONFIG[gpiote_ch] = (GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) | ((uint32_t)psel_ch << 8) | (GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos) | ((uint32_t)active_level << GPIOTE_CONFIG_OUTINIT_Pos); /* setup PPI */ uint32_t pulse_end_event_address, period_end_event_address; nrf_gpiote_task_t pulse_end_task, period_end_task; #if defined(GPIOTE_FEATURE_SET_PRESENT) && defined(GPIOTE_FEATURE_CLR_PRESENT) if (active_level == 0) { pulse_end_task = nrf_gpiote_set_task_get(gpiote_ch); period_end_task = nrf_gpiote_clr_task_get(gpiote_ch); } else { pulse_end_task = nrf_gpiote_clr_task_get(gpiote_ch); period_end_task = nrf_gpiote_set_task_get(gpiote_ch); } #else pulse_end_task = period_end_task = nrf_gpiote_out_task_get(gpiote_ch); #endif uint32_t pulse_end_task_address = nrf_gpiote_task_address_get(gpiote, pulse_end_task); uint32_t period_end_task_address = nrf_gpiote_task_address_get(gpiote, period_end_task); if (USE_RTC) { uint32_t clear_task_address = nrf_rtc_event_address_get(rtc, NRF_RTC_TASK_CLEAR); pulse_end_event_address = nrf_rtc_event_address_get(rtc, nrf_rtc_compare_event_get(1 + channel)); period_end_event_address = nrf_rtc_event_address_get(rtc, nrf_rtc_compare_event_get(0)); #if PPI_FORK_AVAILABLE nrfx_gppi_fork_endpoint_setup(ppi_chs[1], clear_task_address); #else nrfx_gppi_channel_endpoints_setup(ppi_chs[2], period_end_event_address, clear_task_address); #endif } else { pulse_end_event_address = nrf_timer_event_address_get(timer, nrf_timer_compare_event_get(1 + channel)); period_end_event_address = nrf_timer_event_address_get(timer, nrf_timer_compare_event_get(0)); } nrfx_gppi_channel_endpoints_setup(ppi_chs[0], pulse_end_event_address, pulse_end_task_address); nrfx_gppi_channel_endpoints_setup(ppi_chs[1], period_end_event_address, period_end_task_address); nrfx_gppi_channels_enable(ppi_mask); /* start timer, hence PWM */ if (USE_RTC) { nrf_rtc_task_trigger(rtc, NRF_RTC_TASK_START); } else { nrf_timer_task_trigger(timer, NRF_TIMER_TASK_START); } /* store the period and pulse cycles */ data->period_cycles = period_cycles; data->pulse_cycles[channel] = pulse_cycles; return 0; } static int pwm_nrf_sw_get_cycles_per_sec(const struct device *dev, uint32_t channel, uint64_t *cycles) { const struct pwm_config *config = dev->config; if (USE_RTC) { /* * RTC frequency is derived from 32768Hz source without any * prescaler */ *cycles = 32768UL; } else { /* * HF timer frequency is derived from 16MHz source with a * prescaler */ *cycles = 16000000UL / BIT(config->prescaler); } return 0; } static const struct pwm_driver_api pwm_nrf_sw_drv_api_funcs = { .set_cycles = pwm_nrf_sw_set_cycles, .get_cycles_per_sec = pwm_nrf_sw_get_cycles_per_sec, }; static int pwm_nrf_sw_init(const struct device *dev) { const struct pwm_config *config = dev->config; struct pwm_data *data = dev->data; NRF_TIMER_Type *timer = pwm_config_timer(config); NRF_RTC_Type *rtc = pwm_config_rtc(config); for (uint32_t i = 0; i < config->map_size; i++) { nrfx_err_t err; /* Allocate resources. */ for (uint32_t j = 0; j < PPI_PER_CH; j++) { err = nrfx_gppi_channel_alloc(&data->ppi_ch[i][j]); if (err != NRFX_SUCCESS) { /* Do not free allocated resource. It is a fatal condition, * system requires reconfiguration. */ LOG_ERR("Failed to allocate PPI channel"); return -ENOMEM; } } err = nrfx_gpiote_channel_alloc(&config->gpiote[i], &data->gpiote_ch[i]); if (err != NRFX_SUCCESS) { /* Do not free allocated resource. It is a fatal condition, * system requires reconfiguration. */ LOG_ERR("Failed to allocate GPIOTE channel"); return -ENOMEM; } /* Set initial state of the output pins. */ nrf_gpio_pin_write(config->psel_ch[i], (config->initially_inverted & BIT(i)) ? 1 : 0); nrf_gpio_cfg_output(config->psel_ch[i]); } if (USE_RTC) { /* setup RTC */ nrf_rtc_prescaler_set(rtc, 0); nrf_rtc_event_enable(rtc, NRF_RTC_INT_COMPARE0_MASK | NRF_RTC_INT_COMPARE1_MASK | NRF_RTC_INT_COMPARE2_MASK | NRF_RTC_INT_COMPARE3_MASK); } else { /* setup HF timer */ nrf_timer_mode_set(timer, NRF_TIMER_MODE_TIMER); nrf_timer_prescaler_set(timer, config->prescaler); nrf_timer_bit_width_set(timer, GENERATOR_BITS == 32 ? NRF_TIMER_BIT_WIDTH_32 : NRF_TIMER_BIT_WIDTH_16); nrf_timer_shorts_enable(timer, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK); } return 0; } #define PSEL_AND_COMMA(_node_id, _prop, _idx) \ NRF_DT_GPIOS_TO_PSEL_BY_IDX(_node_id, _prop, _idx), #define ACTIVE_LOW_BITS(_node_id, _prop, _idx) \ ((DT_GPIO_FLAGS_BY_IDX(_node_id, _prop, _idx) & GPIO_ACTIVE_LOW) \ ? BIT(_idx) : 0) | #define GPIOTE_AND_COMMA(_node_id, _prop, _idx) \ NRFX_GPIOTE_INSTANCE(NRF_DT_GPIOTE_INST_BY_IDX(_node_id, _prop, _idx)), static const struct pwm_config pwm_nrf_sw_0_config = { COND_CODE_1(USE_RTC, (.rtc), (.timer)) = GENERATOR_ADDR, .gpiote = { DT_INST_FOREACH_PROP_ELEM(0, channel_gpios, GPIOTE_AND_COMMA) }, .psel_ch = { DT_INST_FOREACH_PROP_ELEM(0, channel_gpios, PSEL_AND_COMMA) }, .initially_inverted = DT_INST_FOREACH_PROP_ELEM(0, channel_gpios, ACTIVE_LOW_BITS) 0, .map_size = PWM_0_MAP_SIZE, .prescaler = DT_INST_PROP(0, clock_prescaler), }; static struct pwm_data pwm_nrf_sw_0_data; DEVICE_DT_INST_DEFINE(0, pwm_nrf_sw_init, NULL, &pwm_nrf_sw_0_data, &pwm_nrf_sw_0_config, POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, &pwm_nrf_sw_drv_api_funcs);