/* adc_qmsi.c - QMSI ADC Sensor Subsystem driver */ /* * Copyright (c) 2016 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "qm_ss_isr.h" #include "qm_ss_adc.h" #include "ss_clk.h" enum { ADC_STATE_IDLE, ADC_STATE_BUSY, ADC_STATE_ERROR }; struct adc_info { atomic_t state; device_sync_call_t sync; struct k_sem sem; #ifdef CONFIG_DEVICE_POWER_MANAGEMENT uint32_t device_power_state; #ifdef CONFIG_SYS_POWER_DEEP_SLEEP qm_ss_adc_context_t adc_ctx; #endif #endif }; static void adc_config_irq(void); static qm_ss_adc_config_t cfg; #if (CONFIG_ADC_QMSI_INTERRUPT) static void complete_callback(void *data, int error, qm_ss_adc_status_t status, qm_ss_adc_cb_source_t source) { ARG_UNUSED(status); ARG_UNUSED(source); struct device *dev = data; struct adc_info *info = dev->driver_data; if (info) { if (error) { info->state = ADC_STATE_ERROR; } device_sync_call_complete(&info->sync); } } #endif static void adc_lock(struct adc_info *data) { k_sem_take(&data->sem, K_FOREVER); data->state = ADC_STATE_BUSY; } static void adc_unlock(struct adc_info *data) { k_sem_give(&data->sem); data->state = ADC_STATE_IDLE; } #if (CONFIG_ADC_QMSI_CALIBRATION) static void adc_qmsi_ss_enable(struct device *dev) { struct adc_info *info = dev->driver_data; adc_lock(info); qm_ss_adc_set_mode(QM_SS_ADC_0, QM_SS_ADC_MODE_NORM_CAL); qm_ss_adc_calibrate(QM_SS_ADC_0); adc_unlock(info); } #else static void adc_qmsi_ss_enable(struct device *dev) { struct adc_info *info = dev->driver_data; adc_lock(info); qm_ss_adc_set_mode(QM_SS_ADC_0, QM_SS_ADC_MODE_NORM_NO_CAL); adc_unlock(info); } #endif /* CONFIG_ADC_QMSI_CALIBRATION */ static void adc_qmsi_ss_disable(struct device *dev) { struct adc_info *info = dev->driver_data; adc_lock(info); /* Go to deep sleep */ qm_ss_adc_set_mode(QM_SS_ADC_0, QM_SS_ADC_MODE_DEEP_PWR_DOWN); adc_unlock(info); } #if (CONFIG_ADC_QMSI_POLL) static int adc_qmsi_ss_read(struct device *dev, struct adc_seq_table *seq_tbl) { int i, ret = 0; qm_ss_adc_xfer_t xfer; qm_ss_adc_status_t status; struct adc_info *info = dev->driver_data; for (i = 0; i < seq_tbl->num_entries; i++) { xfer.ch = (qm_ss_adc_channel_t *)&seq_tbl->entries[i].channel_id; /* Just one channel at the time using the Zephyr sequence table */ xfer.ch_len = 1; xfer.samples = (qm_ss_adc_sample_t *)seq_tbl->entries[i].buffer; /* buffer length (bytes) the number of samples, the QMSI Driver * does not allow more than QM_ADC_FIFO_LEN samples at the time * in polling mode, if that happens, the qm_adc_convert api will * return with an error */ xfer.samples_len = (seq_tbl->entries[i].buffer_length)/sizeof(qm_ss_adc_sample_t); xfer.callback = NULL; xfer.callback_data = NULL; cfg.window = seq_tbl->entries[i].sampling_delay; adc_lock(info); if (qm_ss_adc_set_config(QM_SS_ADC_0, &cfg) != 0) { ret = -EINVAL; adc_unlock(info); break; } /* Run the conversion, here the function will poll for the * samples. The function will constantly read the status * register to check if the number of samples required has been * captured */ if (qm_ss_adc_convert(QM_SS_ADC_0, &xfer, &status) != 0) { ret = -EIO; adc_unlock(info); break; } /* Successful Analog to Digital conversion */ adc_unlock(info); } return ret; } #else static int adc_qmsi_ss_read(struct device *dev, struct adc_seq_table *seq_tbl) { int i, ret = 0; qm_ss_adc_xfer_t xfer; struct adc_info *info = dev->driver_data; for (i = 0; i < seq_tbl->num_entries; i++) { xfer.ch = (qm_ss_adc_channel_t *)&seq_tbl->entries[i].channel_id; /* Just one channel at the time using the Zephyr sequence table */ xfer.ch_len = 1; xfer.samples = (qm_ss_adc_sample_t *)seq_tbl->entries[i].buffer; xfer.samples_len = (seq_tbl->entries[i].buffer_length)/sizeof(qm_ss_adc_sample_t); xfer.callback = complete_callback; xfer.callback_data = dev; cfg.window = seq_tbl->entries[i].sampling_delay; adc_lock(info); if (qm_ss_adc_set_config(QM_SS_ADC_0, &cfg) != 0) { ret = -EINVAL; adc_unlock(info); break; } /* This is the interrupt driven API, will generate and interrupt and * call the complete_callback function once the samples have been * obtained */ if (qm_ss_adc_irq_convert(QM_SS_ADC_0, &xfer) != 0) { ret = -EIO; adc_unlock(info); break; } /* Wait for the interrupt to finish */ device_sync_call_wait(&info->sync); if (info->state == ADC_STATE_ERROR) { ret = -EIO; adc_unlock(info); break; } /* Successful Analog to Digital conversion */ adc_unlock(info); } return ret; } #endif /* CONFIG_ADC_QMSI_POLL */ static void adc_qmsi_ss_rx_isr(void *arg) { ARG_UNUSED(arg); qm_ss_adc_0_isr(NULL); } static void adc_qmsi_ss_err_isr(void *arg) { ARG_UNUSED(arg); qm_ss_adc_0_error_isr(NULL); } static const struct adc_driver_api api_funcs = { .enable = adc_qmsi_ss_enable, .disable = adc_qmsi_ss_disable, .read = adc_qmsi_ss_read, }; #ifdef CONFIG_DEVICE_POWER_MANAGEMENT static void adc_qmsi_ss_set_power_state(struct device *dev, uint32_t power_state) { struct adc_info *context = dev->driver_data; context->device_power_state = power_state; } static uint32_t adc_qmsi_ss_get_power_state(struct device *dev) { struct adc_info *context = dev->driver_data; return context->device_power_state; } #if CONFIG_SYS_POWER_DEEP_SLEEP static int adc_qmsi_ss_suspend_device(struct device *dev) { struct adc_info *context = dev->driver_data; qm_ss_adc_save_context(QM_SS_ADC_0, &context->adc_ctx); adc_qmsi_ss_set_power_state(dev, DEVICE_PM_SUSPEND_STATE); return 0; } static int adc_qmsi_ss_resume_device_from_suspend(struct device *dev) { struct adc_info *context = dev->driver_data; qm_ss_adc_restore_context(QM_SS_ADC_0, &context->adc_ctx); adc_qmsi_ss_set_power_state(dev, DEVICE_PM_ACTIVE_STATE); return 0; } #endif /* CONFIG_SYS_POWER_DEEP_SLEEP */ static int adc_qmsi_ss_device_ctrl(struct device *dev, uint32_t ctrl_command, void *context) { if (ctrl_command == DEVICE_PM_SET_POWER_STATE) { #ifdef CONFIG_SYS_POWER_DEEP_SLEEP if (*((uint32_t *)context) == DEVICE_PM_SUSPEND_STATE) { return adc_qmsi_ss_suspend_device(dev); } else if (*((uint32_t *)context) == DEVICE_PM_ACTIVE_STATE) { return adc_qmsi_ss_resume_device_from_suspend(dev); } #endif } else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) { *((uint32_t *)context) = adc_qmsi_ss_get_power_state(dev); } return 0; } #else #define adc_qmsi_ss_set_power_state(...) #endif /* CONFIG_DEVICE_POWER_MANAGEMENT */ static int adc_qmsi_ss_init(struct device *dev) { struct adc_info *info = dev->driver_data; /* Set up config */ /* Clock cycles between the start of each sample */ cfg.window = CONFIG_ADC_QMSI_SERIAL_DELAY; cfg.resolution = CONFIG_ADC_QMSI_SAMPLE_WIDTH; qm_ss_adc_set_config(QM_SS_ADC_0, &cfg); ss_clk_adc_enable(); ss_clk_adc_set_div(CONFIG_ADC_QMSI_CLOCK_RATIO); device_sync_call_init(&info->sync); k_sem_init(&info->sem, 0, UINT_MAX); k_sem_give(&info->sem); info->state = ADC_STATE_IDLE; adc_config_irq(); adc_qmsi_ss_set_power_state(dev, DEVICE_PM_ACTIVE_STATE); return 0; } static struct adc_info adc_info_dev; DEVICE_DEFINE(adc_qmsi_ss, CONFIG_ADC_0_NAME, &adc_qmsi_ss_init, adc_qmsi_ss_device_ctrl, &adc_info_dev, NULL, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, &api_funcs); static void adc_config_irq(void) { uint32_t *scss_intmask; IRQ_CONNECT(IRQ_ADC_IRQ, CONFIG_ADC_0_IRQ_PRI, adc_qmsi_ss_rx_isr, DEVICE_GET(adc_qmsi_ss), 0); irq_enable(IRQ_ADC_IRQ); IRQ_CONNECT(IRQ_ADC_ERR, CONFIG_ADC_0_IRQ_PRI, adc_qmsi_ss_err_isr, DEVICE_GET(adc_qmsi_ss), 0); irq_enable(IRQ_ADC_ERR); scss_intmask = (uint32_t *)&QM_INTERRUPT_ROUTER->ss_adc_0_error_int_mask; *scss_intmask &= ~BIT(8); scss_intmask = (uint32_t *)&QM_INTERRUPT_ROUTER->ss_adc_0_int_mask; *scss_intmask &= ~BIT(8); }