/* * Copyright (c) 2018 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT st_stm32_i2s #include #include #include #include #include #include #include #include "i2s_ll_stm32.h" #include LOG_MODULE_REGISTER(i2s_ll_stm32); /* FIXME change to * #if __DCACHE_PRESENT == 1 * when cache support is added */ #if 0 #define DCACHE_INVALIDATE(addr, size) \ SCB_InvalidateDCache_by_Addr((u32_t *)addr, size) #define DCACHE_CLEAN(addr, size) \ SCB_CleanDCache_by_Addr((u32_t *)addr, size) #else #define DCACHE_INVALIDATE(addr, size) {; } #define DCACHE_CLEAN(addr, size) {; } #endif #define MODULO_INC(val, max) { val = (++val < max) ? val : 0; } static unsigned int div_round_closest(u32_t dividend, u32_t divisor) { return (dividend + (divisor / 2U)) / divisor; } /* * Get data from the queue */ static int queue_get(struct ring_buf *rb, void **mem_block, size_t *size) { unsigned int key; key = irq_lock(); if (rb->tail == rb->head) { /* Ring buffer is empty */ irq_unlock(key); return -ENOMEM; } *mem_block = rb->buf[rb->tail].mem_block; *size = rb->buf[rb->tail].size; MODULO_INC(rb->tail, rb->len); irq_unlock(key); return 0; } /* * Put data in the queue */ static int queue_put(struct ring_buf *rb, void *mem_block, size_t size) { u16_t head_next; unsigned int key; key = irq_lock(); head_next = rb->head; MODULO_INC(head_next, rb->len); if (head_next == rb->tail) { /* Ring buffer is full */ irq_unlock(key); return -ENOMEM; } rb->buf[rb->head].mem_block = mem_block; rb->buf[rb->head].size = size; rb->head = head_next; irq_unlock(key); return 0; } static int i2s_stm32_enable_clock(struct device *dev) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct device *clk; int ret; clk = device_get_binding(STM32_CLOCK_CONTROL_NAME); __ASSERT_NO_MSG(clk); ret = clock_control_on(clk, (clock_control_subsys_t *) &cfg->pclken); if (ret != 0) { LOG_ERR("Could not enable I2S clock"); return -EIO; } return 0; } #ifdef CONFIG_I2S_STM32_USE_PLLI2S_ENABLE #define PLLI2S_MAX_MS_TIME 1 /* PLLI2S lock time is 300us max */ static u16_t plli2s_ms_count; #define z_pllr(v) LL_RCC_PLLI2SR_DIV_ ## v #define pllr(v) z_pllr(v) #endif static int i2s_stm32_set_clock(struct device *dev, u32_t bit_clk_freq) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); u32_t pll_src = LL_RCC_PLL_GetMainSource(); int freq_in; u8_t i2s_div, i2s_odd; freq_in = (pll_src == LL_RCC_PLLSOURCE_HSI) ? HSI_VALUE : CONFIG_CLOCK_STM32_HSE_CLOCK; #ifdef CONFIG_I2S_STM32_USE_PLLI2S_ENABLE /* Set PLLI2S */ LL_RCC_PLLI2S_Disable(); LL_RCC_PLLI2S_ConfigDomain_I2S(pll_src, CONFIG_I2S_STM32_PLLI2S_PLLM, CONFIG_I2S_STM32_PLLI2S_PLLN, pllr(CONFIG_I2S_STM32_PLLI2S_PLLR)); LL_RCC_PLLI2S_Enable(); /* wait until PLLI2S gets locked */ while (!LL_RCC_PLLI2S_IsReady()) { if (plli2s_ms_count++ > PLLI2S_MAX_MS_TIME) { return -EIO; } /* wait 1 ms */ k_sleep(K_MSEC(1)); } LOG_DBG("PLLI2S is locked"); /* Adjust freq_in according to PLLM, PLLN, PLLR */ float freq_tmp; freq_tmp = freq_in / CONFIG_I2S_STM32_PLLI2S_PLLM; freq_tmp *= CONFIG_I2S_STM32_PLLI2S_PLLN; freq_tmp /= CONFIG_I2S_STM32_PLLI2S_PLLR; freq_in = (int) freq_tmp; #endif /* CONFIG_I2S_STM32_USE_PLLI2S_ENABLE */ /* Select clock source */ LL_RCC_SetI2SClockSource(cfg->i2s_clk_sel); /* * The ratio between input clock (I2SxClk) and output * clock on the pad (I2S_CK) is obtained using the * following formula: * (i2s_div * 2) + i2s_odd */ i2s_div = div_round_closest(freq_in, bit_clk_freq); i2s_odd = (i2s_div & 0x1) ? 1 : 0; i2s_div >>= 1; LOG_DBG("i2s_div: %d - i2s_odd: %d", i2s_div, i2s_odd); LL_I2S_SetPrescalerLinear(cfg->i2s, i2s_div); LL_I2S_SetPrescalerParity(cfg->i2s, i2s_odd); return 0; } static int i2s_stm32_configure(struct device *dev, enum i2s_dir dir, struct i2s_config *i2s_cfg) { const struct i2s_stm32_cfg *const cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct stream *stream; u32_t bit_clk_freq; int ret; if (dir == I2S_DIR_RX) { stream = &dev_data->rx; } else if (dir == I2S_DIR_TX) { stream = &dev_data->tx; } else { LOG_ERR("Either RX or TX direction must be selected"); return -EINVAL; } if (stream->state != I2S_STATE_NOT_READY && stream->state != I2S_STATE_READY) { LOG_ERR("invalid state"); return -EINVAL; } stream->master = true; if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE || i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) { stream->master = false; } if (i2s_cfg->frame_clk_freq == 0U) { stream->queue_drop(stream); memset(&stream->cfg, 0, sizeof(struct i2s_config)); stream->state = I2S_STATE_NOT_READY; return 0; } memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config)); /* set I2S bitclock */ bit_clk_freq = i2s_cfg->frame_clk_freq * i2s_cfg->word_size * i2s_cfg->channels; ret = i2s_stm32_set_clock(dev, bit_clk_freq); if (ret < 0) { return ret; } /* set I2S Master Clock */ if (stream->master) { LL_I2S_EnableMasterClock(cfg->i2s); } else { LL_I2S_DisableMasterClock(cfg->i2s); } /* set I2S Data Format */ if (i2s_cfg->word_size == 16U) { LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_16B); } else if (i2s_cfg->word_size == 24U) { LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_24B); } else if (i2s_cfg->word_size == 32U) { LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_32B); } else { LOG_ERR("invalid word size"); return -EINVAL; } /* set I2S Standard */ switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) { case I2S_FMT_DATA_FORMAT_I2S: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PHILIPS); break; case I2S_FMT_DATA_FORMAT_PCM_SHORT: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_SHORT); break; case I2S_FMT_DATA_FORMAT_PCM_LONG: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_LONG); break; case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_MSB); break; case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_LSB); break; default: LOG_ERR("Unsupported I2S data format"); return -EINVAL; } /* set I2S clock polarity */ if ((i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) == I2S_FMT_BIT_CLK_INV) LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_HIGH); else LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_LOW); stream->state = I2S_STATE_READY; return 0; } static int i2s_stm32_trigger(struct device *dev, enum i2s_dir dir, enum i2s_trigger_cmd cmd) { struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct stream *stream; unsigned int key; int ret; if (dir == I2S_DIR_RX) { stream = &dev_data->rx; } else if (dir == I2S_DIR_TX) { stream = &dev_data->tx; } else { LOG_ERR("Either RX or TX direction must be selected"); return -EINVAL; } switch (cmd) { case I2S_TRIGGER_START: if (stream->state != I2S_STATE_READY) { LOG_ERR("START trigger: invalid state %d", stream->state); return -EIO; } __ASSERT_NO_MSG(stream->mem_block == NULL); ret = stream->stream_start(stream, dev); if (ret < 0) { LOG_ERR("START trigger failed %d", ret); return ret; } stream->state = I2S_STATE_RUNNING; stream->last_block = false; break; case I2S_TRIGGER_STOP: key = irq_lock(); if (stream->state != I2S_STATE_RUNNING) { irq_unlock(key); LOG_ERR("STOP trigger: invalid state"); return -EIO; } irq_unlock(key); stream->stream_disable(stream, dev); stream->queue_drop(stream); stream->state = I2S_STATE_READY; stream->last_block = true; break; case I2S_TRIGGER_DRAIN: key = irq_lock(); if (stream->state != I2S_STATE_RUNNING) { irq_unlock(key); LOG_ERR("DRAIN trigger: invalid state"); return -EIO; } stream->stream_disable(stream, dev); stream->queue_drop(stream); stream->state = I2S_STATE_READY; irq_unlock(key); break; case I2S_TRIGGER_DROP: if (stream->state == I2S_STATE_NOT_READY) { LOG_ERR("DROP trigger: invalid state"); return -EIO; } stream->stream_disable(stream, dev); stream->queue_drop(stream); stream->state = I2S_STATE_READY; break; case I2S_TRIGGER_PREPARE: if (stream->state != I2S_STATE_ERROR) { LOG_ERR("PREPARE trigger: invalid state"); return -EIO; } stream->state = I2S_STATE_READY; stream->queue_drop(stream); break; default: LOG_ERR("Unsupported trigger command"); return -EINVAL; } return 0; } static int i2s_stm32_read(struct device *dev, void **mem_block, size_t *size) { struct i2s_stm32_data *const dev_data = DEV_DATA(dev); int ret; if (dev_data->rx.state == I2S_STATE_NOT_READY) { LOG_DBG("invalid state"); return -EIO; } if (dev_data->rx.state != I2S_STATE_ERROR) { ret = k_sem_take(&dev_data->rx.sem, SYS_TIMEOUT_MS(dev_data->rx.cfg.timeout)); if (ret < 0) { return ret; } } /* Get data from the beginning of RX queue */ ret = queue_get(&dev_data->rx.mem_block_queue, mem_block, size); if (ret < 0) { return -EIO; } return 0; } static int i2s_stm32_write(struct device *dev, void *mem_block, size_t size) { struct i2s_stm32_data *const dev_data = DEV_DATA(dev); int ret; if (dev_data->tx.state != I2S_STATE_RUNNING && dev_data->tx.state != I2S_STATE_READY) { LOG_DBG("invalid state"); return -EIO; } ret = k_sem_take(&dev_data->tx.sem, SYS_TIMEOUT_MS(dev_data->tx.cfg.timeout)); if (ret < 0) { return ret; } /* Add data to the end of the TX queue */ queue_put(&dev_data->tx.mem_block_queue, mem_block, size); return 0; } static const struct i2s_driver_api i2s_stm32_driver_api = { .configure = i2s_stm32_configure, .read = i2s_stm32_read, .write = i2s_stm32_write, .trigger = i2s_stm32_trigger, }; #define STM32_DMA_NUM_CHANNELS 8 static struct device *active_dma_rx_channel[STM32_DMA_NUM_CHANNELS]; static struct device *active_dma_tx_channel[STM32_DMA_NUM_CHANNELS]; static int reload_dma(struct device *dev_dma, u32_t channel, struct dma_config *dcfg, void *src, void *dst, u32_t blk_size) { int ret; ret = dma_reload(dev_dma, channel, (u32_t)src, (u32_t)dst, blk_size); if (ret < 0) { return ret; } ret = dma_start(dev_dma, channel); return ret; } static int start_dma(struct device *dev_dma, u32_t channel, struct dma_config *dcfg, void *src, bool src_addr_increment, void *dst, bool dst_addr_increment, u8_t fifo_threshold, u32_t blk_size) { struct dma_block_config blk_cfg; int ret; memset(&blk_cfg, 0, sizeof(blk_cfg)); blk_cfg.block_size = blk_size; blk_cfg.source_address = (u32_t)src; blk_cfg.dest_address = (u32_t)dst; if (src_addr_increment) { blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } if (dst_addr_increment) { blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } blk_cfg.fifo_mode_control = fifo_threshold; dcfg->head_block = &blk_cfg; ret = dma_config(dev_dma, channel, dcfg); if (ret < 0) { return ret; } ret = dma_start(dev_dma, channel); return ret; } static struct device *get_dev_from_rx_dma_channel(u32_t dma_channel); static struct device *get_dev_from_tx_dma_channel(u32_t dma_channel); static void rx_stream_disable(struct stream *stream, struct device *dev); static void tx_stream_disable(struct stream *stream, struct device *dev); /* This function is executed in the interrupt context */ static void dma_rx_callback(void *arg, u32_t channel, int status) { struct device *dev = get_dev_from_rx_dma_channel(channel); const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct stream *stream = &dev_data->rx; void *mblk_tmp; int ret; if (status != 0) { ret = -EIO; stream->state = I2S_STATE_ERROR; goto rx_disable; } __ASSERT_NO_MSG(stream->mem_block != NULL); /* Stop reception if there was an error */ if (stream->state == I2S_STATE_ERROR) { goto rx_disable; } mblk_tmp = stream->mem_block; /* Prepare to receive the next data block */ ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block, K_NO_WAIT); if (ret < 0) { stream->state = I2S_STATE_ERROR; goto rx_disable; } ret = reload_dma(dev_data->dev_dma_rx, stream->dma_channel, &stream->dma_cfg, (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), stream->mem_block, stream->cfg.block_size); if (ret < 0) { LOG_DBG("Failed to start RX DMA transfer: %d", ret); goto rx_disable; } /* Assure cache coherency after DMA write operation */ DCACHE_INVALIDATE(mblk_tmp, stream->cfg.block_size); /* All block data received */ ret = queue_put(&stream->mem_block_queue, mblk_tmp, stream->cfg.block_size); if (ret < 0) { stream->state = I2S_STATE_ERROR; goto rx_disable; } k_sem_give(&stream->sem); /* Stop reception if we were requested */ if (stream->state == I2S_STATE_STOPPING) { stream->state = I2S_STATE_READY; goto rx_disable; } return; rx_disable: rx_stream_disable(stream, dev); } static void dma_tx_callback(void *arg, u32_t channel, int status) { struct device *dev = get_dev_from_tx_dma_channel(channel); const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct stream *stream = &dev_data->tx; size_t mem_block_size; int ret; if (status != 0) { ret = -EIO; stream->state = I2S_STATE_ERROR; goto tx_disable; } __ASSERT_NO_MSG(stream->mem_block != NULL); /* All block data sent */ k_mem_slab_free(stream->cfg.mem_slab, &stream->mem_block); stream->mem_block = NULL; /* Stop transmission if there was an error */ if (stream->state == I2S_STATE_ERROR) { LOG_ERR("TX error detected"); goto tx_disable; } /* Stop transmission if we were requested */ if (stream->last_block) { stream->state = I2S_STATE_READY; goto tx_disable; } /* Prepare to send the next data block */ ret = queue_get(&stream->mem_block_queue, &stream->mem_block, &mem_block_size); if (ret < 0) { if (stream->state == I2S_STATE_STOPPING) { stream->state = I2S_STATE_READY; } else { stream->state = I2S_STATE_ERROR; } goto tx_disable; } k_sem_give(&stream->sem); /* Assure cache coherency before DMA read operation */ DCACHE_CLEAN(stream->mem_block, mem_block_size); ret = reload_dma(dev_data->dev_dma_tx, stream->dma_channel, &stream->dma_cfg, stream->mem_block, (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), stream->cfg.block_size); if (ret < 0) { LOG_DBG("Failed to start TX DMA transfer: %d", ret); goto tx_disable; } return; tx_disable: tx_stream_disable(stream, dev); } static u32_t i2s_stm32_irq_count; static u32_t i2s_stm32_irq_ovr_count; static void i2s_stm32_isr(void *arg) { struct device *const dev = (struct device *) arg; const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct stream *stream = &dev_data->rx; LOG_ERR("%s: err=%d", __func__, (int)LL_I2S_ReadReg(cfg->i2s, SR)); stream->state = I2S_STATE_ERROR; /* OVR error must be explicitly cleared */ if (LL_I2S_IsActiveFlag_OVR(cfg->i2s)) { i2s_stm32_irq_ovr_count++; LL_I2S_ClearFlag_OVR(cfg->i2s); } i2s_stm32_irq_count++; } static int i2s_stm32_initialize(struct device *dev) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); int ret, i; /* Enable I2S clock propagation */ ret = i2s_stm32_enable_clock(dev); if (ret < 0) { LOG_ERR("%s: clock enabling failed: %d", __func__, ret); return -EIO; } cfg->irq_config(dev); k_sem_init(&dev_data->rx.sem, 0, CONFIG_I2S_STM32_RX_BLOCK_COUNT); k_sem_init(&dev_data->tx.sem, CONFIG_I2S_STM32_TX_BLOCK_COUNT, CONFIG_I2S_STM32_TX_BLOCK_COUNT); for (i = 0; i < STM32_DMA_NUM_CHANNELS; i++) { active_dma_rx_channel[i] = NULL; active_dma_tx_channel[i] = NULL; } /* Get the binding to the DMA device */ dev_data->dev_dma_tx = device_get_binding(dev_data->tx.dma_name); if (!dev_data->dev_dma_tx) { LOG_ERR("%s device not found", dev_data->tx.dma_name); return -ENODEV; } dev_data->dev_dma_rx = device_get_binding(dev_data->rx.dma_name); if (!dev_data->dev_dma_rx) { LOG_ERR("%s device not found", dev_data->rx.dma_name); return -ENODEV; } LOG_INF("%s inited", dev->config->name); return 0; } static int rx_stream_start(struct stream *stream, struct device *dev) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); int ret; ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block, K_NO_WAIT); if (ret < 0) { return ret; } if (stream->master) { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_RX); } else { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_RX); } /* remember active RX DMA channel (used in callback) */ active_dma_rx_channel[stream->dma_channel] = dev; ret = start_dma(dev_data->dev_dma_rx, stream->dma_channel, &stream->dma_cfg, (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), stream->src_addr_increment, stream->mem_block, stream->dst_addr_increment, stream->fifo_threshold, stream->cfg.block_size); if (ret < 0) { LOG_ERR("Failed to start RX DMA transfer: %d", ret); return ret; } LL_I2S_EnableDMAReq_RX(cfg->i2s); LL_I2S_EnableIT_ERR(cfg->i2s); LL_I2S_Enable(cfg->i2s); return 0; } static int tx_stream_start(struct stream *stream, struct device *dev) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); size_t mem_block_size; int ret; ret = queue_get(&stream->mem_block_queue, &stream->mem_block, &mem_block_size); if (ret < 0) { return ret; } k_sem_give(&stream->sem); /* Assure cache coherency before DMA read operation */ DCACHE_CLEAN(stream->mem_block, mem_block_size); if (stream->master) { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_TX); } else { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_TX); } /* remember active TX DMA channel (used in callback) */ active_dma_tx_channel[stream->dma_channel] = dev; ret = start_dma(dev_data->dev_dma_tx, stream->dma_channel, &stream->dma_cfg, stream->mem_block, stream->src_addr_increment, (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), stream->dst_addr_increment, stream->fifo_threshold, stream->cfg.block_size); if (ret < 0) { LOG_ERR("Failed to start TX DMA transfer: %d", ret); return ret; } LL_I2S_EnableDMAReq_TX(cfg->i2s); LL_I2S_EnableIT_ERR(cfg->i2s); LL_I2S_Enable(cfg->i2s); return 0; } static void rx_stream_disable(struct stream *stream, struct device *dev) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct device *dev_dma = dev_data->dev_dma_rx; LL_I2S_DisableDMAReq_RX(cfg->i2s); LL_I2S_DisableIT_ERR(cfg->i2s); dma_stop(dev_dma, stream->dma_channel); if (stream->mem_block != NULL) { k_mem_slab_free(stream->cfg.mem_slab, &stream->mem_block); stream->mem_block = NULL; } LL_I2S_Disable(cfg->i2s); active_dma_rx_channel[stream->dma_channel] = NULL; } static void tx_stream_disable(struct stream *stream, struct device *dev) { const struct i2s_stm32_cfg *cfg = DEV_CFG(dev); struct i2s_stm32_data *const dev_data = DEV_DATA(dev); struct device *dev_dma = dev_data->dev_dma_tx; LL_I2S_DisableDMAReq_TX(cfg->i2s); LL_I2S_DisableIT_ERR(cfg->i2s); dma_stop(dev_dma, stream->dma_channel); if (stream->mem_block != NULL) { k_mem_slab_free(stream->cfg.mem_slab, &stream->mem_block); stream->mem_block = NULL; } LL_I2S_Disable(cfg->i2s); active_dma_tx_channel[stream->dma_channel] = NULL; } static void rx_queue_drop(struct stream *stream) { size_t size; void *mem_block; while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) { k_mem_slab_free(stream->cfg.mem_slab, &mem_block); } k_sem_reset(&stream->sem); } static void tx_queue_drop(struct stream *stream) { size_t size; void *mem_block; unsigned int n = 0U; while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) { k_mem_slab_free(stream->cfg.mem_slab, &mem_block); n++; } for (; n > 0; n--) { k_sem_give(&stream->sem); } } static struct device *get_dev_from_rx_dma_channel(u32_t dma_channel) { return active_dma_rx_channel[dma_channel]; } static struct device *get_dev_from_tx_dma_channel(u32_t dma_channel) { return active_dma_tx_channel[dma_channel]; } /* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ #define I2S_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ .dir = { \ .dma_name = DT_DMAS_LABEL_BY_NAME(DT_NODELABEL(i2s##index), dir),\ .dma_channel = \ DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel),\ .dma_cfg = { \ .block_count = 2, \ .dma_slot = \ DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, slot),\ .channel_direction = src_dev##_TO_##dest_dev, \ .source_data_size = 2, /* 16bit default */ \ .dest_data_size = 2, /* 16bit default */ \ .source_burst_length = 0, /* SINGLE transfer */ \ .dest_burst_length = 1, \ .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\ .dma_callback = dma_##dir##_callback, \ }, \ .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\ .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\ .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ DT_DMAS_CELL_BY_NAME(DT_NODELABEL(i2s##index), dir, channel_config)),\ .stream_start = dir##_stream_start, \ .stream_disable = dir##_stream_disable, \ .queue_drop = dir##_queue_drop, \ .mem_block_queue.buf = dir##_##index##_ring_buf, \ .mem_block_queue.len = ARRAY_SIZE(dir##_##index##_ring_buf) \ } #define I2S_INIT(index, clk_sel) \ static struct device DEVICE_NAME_GET(i2s_stm32_##index); \ \ static void i2s_stm32_irq_config_func_##index(struct device *dev); \ \ static const struct i2s_stm32_cfg i2s_stm32_config_##index = { \ .i2s = (SPI_TypeDef *) DT_REG_ADDR(DT_NODELABEL(i2s##index)), \ .pclken = { \ .enr = DT_CLOCKS_CELL(DT_NODELABEL(i2s##index), bits), \ .bus = DT_CLOCKS_CELL(DT_NODELABEL(i2s##index), bus), \ }, \ .i2s_clk_sel = CLK_SEL_##clk_sel, \ .irq_config = i2s_stm32_irq_config_func_##index, \ }; \ \ struct queue_item rx_##index##_ring_buf[CONFIG_I2S_STM32_RX_BLOCK_COUNT + 1];\ struct queue_item tx_##index##_ring_buf[CONFIG_I2S_STM32_TX_BLOCK_COUNT + 1];\ \ static struct i2s_stm32_data i2s_stm32_data_##index = { \ UTIL_AND(DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##index), rx), \ I2S_DMA_CHANNEL_INIT(index, rx, RX, PERIPHERAL, MEMORY)),\ UTIL_AND(DT_DMAS_HAS_NAME(DT_NODELABEL(i2s##index), tx), \ I2S_DMA_CHANNEL_INIT(index, tx, TX, MEMORY, PERIPHERAL)),\ }; \ DEVICE_AND_API_INIT(i2s_stm32_##index, \ DT_LABEL(DT_NODELABEL(i2s##index)), \ &i2s_stm32_initialize, &i2s_stm32_data_##index, \ &i2s_stm32_config_##index, POST_KERNEL, \ CONFIG_I2S_INIT_PRIORITY, &i2s_stm32_driver_api); \ \ static void i2s_stm32_irq_config_func_##index(struct device *dev) \ { \ IRQ_CONNECT(DT_IRQN(DT_NODELABEL(i2s##index)), \ DT_IRQ(DT_NODELABEL(i2s##index), priority), \ i2s_stm32_isr, DEVICE_GET(i2s_stm32_##index), 0); \ irq_enable(DT_IRQN(DT_NODELABEL(i2s##index))); \ } #if DT_HAS_NODE_STATUS_OKAY(DT_NODELABEL(i2s1)) I2S_INIT(1, 2) #endif #if DT_HAS_NODE_STATUS_OKAY(DT_NODELABEL(i2s2)) I2S_INIT(2, 1) #endif #if DT_HAS_NODE_STATUS_OKAY(DT_NODELABEL(i2s3)) I2S_INIT(3, 1) #endif #if DT_HAS_NODE_STATUS_OKAY(DT_NODELABEL(i2s4)) I2S_INIT(4, 2) #endif #if DT_HAS_NODE_STATUS_OKAY(DT_NODELABEL(i2s5)) I2S_INIT(5, 2) #endif