/* ENC28J60 Stand-alone Ethernet Controller with SPI * * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_enc28j60 #define LOG_MODULE_NAME eth_enc28j60 #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include #include #include #include #include #include #include #include #include #include #include "eth_enc28j60_priv.h" #define D10D24S 11 static int eth_enc28j60_soft_reset(const struct device *dev) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[2] = { ENC28J60_SPI_SC, 0xFF }; const struct spi_buf tx_buf = { .buf = buf, .len = 1, }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; return spi_write_dt(&config->spi, &tx); } static void eth_enc28j60_set_bank(const struct device *dev, uint16_t reg_addr) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[2]; const struct spi_buf tx_buf = { .buf = buf, .len = 2 }; const struct spi_buf rx_buf = { .buf = buf, .len = 2 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; const struct spi_buf_set rx = { .buffers = &rx_buf, .count = 1 }; buf[0] = ENC28J60_SPI_RCR | ENC28J60_REG_ECON1; buf[1] = 0x0; if (!spi_transceive_dt(&config->spi, &tx, &rx)) { buf[0] = ENC28J60_SPI_WCR | ENC28J60_REG_ECON1; buf[1] = (buf[1] & 0xFC) | ((reg_addr >> 8) & 0x0F); spi_write_dt(&config->spi, &tx); } else { LOG_DBG("Failure while setting bank to 0x%04x", reg_addr); } } static void eth_enc28j60_write_reg(const struct device *dev, uint16_t reg_addr, uint8_t value) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[2]; const struct spi_buf tx_buf = { .buf = buf, .len = 2 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; buf[0] = ENC28J60_SPI_WCR | (reg_addr & 0xFF); buf[1] = value; spi_write_dt(&config->spi, &tx); } static void eth_enc28j60_read_reg(const struct device *dev, uint16_t reg_addr, uint8_t *value) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[3]; const struct spi_buf tx_buf = { .buf = buf, .len = 2 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; struct spi_buf rx_buf = { .buf = buf, }; const struct spi_buf_set rx = { .buffers = &rx_buf, .count = 1 }; uint8_t rx_size = 2U; if (reg_addr & 0xF000) { rx_size = 3U; } rx_buf.len = rx_size; buf[0] = ENC28J60_SPI_RCR | (reg_addr & 0xFF); buf[1] = 0x0; if (!spi_transceive_dt(&config->spi, &tx, &rx)) { *value = buf[rx_size - 1]; } else { LOG_DBG("Failure while reading register 0x%04x", reg_addr); *value = 0U; } } static void eth_enc28j60_set_eth_reg(const struct device *dev, uint16_t reg_addr, uint8_t value) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[2]; const struct spi_buf tx_buf = { .buf = buf, .len = 2 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; buf[0] = ENC28J60_SPI_BFS | (reg_addr & 0xFF); buf[1] = value; spi_write_dt(&config->spi, &tx); } static void eth_enc28j60_clear_eth_reg(const struct device *dev, uint16_t reg_addr, uint8_t value) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[2]; const struct spi_buf tx_buf = { .buf = buf, .len = 2 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; buf[0] = ENC28J60_SPI_BFC | (reg_addr & 0xFF); buf[1] = value; spi_write_dt(&config->spi, &tx); } static void eth_enc28j60_write_mem(const struct device *dev, uint8_t *data_buffer, uint16_t buf_len) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[1] = { ENC28J60_SPI_WBM }; struct spi_buf tx_buf[2] = { { .buf = buf, .len = 1 }, }; const struct spi_buf_set tx = { .buffers = tx_buf, .count = 2 }; uint16_t num_segments; uint16_t num_remaining; int i; num_segments = buf_len / MAX_BUFFER_LENGTH; num_remaining = buf_len - MAX_BUFFER_LENGTH * num_segments; for (i = 0; i < num_segments; i++, data_buffer += MAX_BUFFER_LENGTH) { tx_buf[1].buf = data_buffer; tx_buf[1].len = MAX_BUFFER_LENGTH; if (spi_write_dt(&config->spi, &tx)) { LOG_ERR("Failed to write memory"); return; } } if (num_remaining > 0) { tx_buf[1].buf = data_buffer; tx_buf[1].len = num_remaining; if (spi_write_dt(&config->spi, &tx)) { LOG_ERR("Failed to write memory"); } } } static void eth_enc28j60_read_mem(const struct device *dev, uint8_t *data_buffer, uint16_t buf_len) { const struct eth_enc28j60_config *config = dev->config; uint8_t buf[1] = { ENC28J60_SPI_RBM }; const struct spi_buf tx_buf = { .buf = buf, .len = 1 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; struct spi_buf rx_buf[2] = { { .buf = NULL, .len = 1 }, }; const struct spi_buf_set rx = { .buffers = rx_buf, .count = 2 }; uint16_t num_segments; uint16_t num_remaining; int i; num_segments = buf_len / MAX_BUFFER_LENGTH; num_remaining = buf_len - MAX_BUFFER_LENGTH * num_segments; for (i = 0; i < num_segments; i++, data_buffer += MAX_BUFFER_LENGTH) { rx_buf[1].buf = data_buffer; rx_buf[1].len = MAX_BUFFER_LENGTH; if (spi_transceive_dt(&config->spi, &tx, &rx)) { LOG_ERR("Failed to read memory"); return; } } if (num_remaining > 0) { rx_buf[1].buf = data_buffer; rx_buf[1].len = num_remaining; if (spi_transceive_dt(&config->spi, &tx, &rx)) { LOG_ERR("Failed to read memory"); } } } static void eth_enc28j60_write_phy(const struct device *dev, uint16_t reg_addr, int16_t data) { uint8_t data_mistat; eth_enc28j60_set_bank(dev, ENC28J60_REG_MIREGADR); eth_enc28j60_write_reg(dev, ENC28J60_REG_MIREGADR, reg_addr); eth_enc28j60_write_reg(dev, ENC28J60_REG_MIWRL, data & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_MIWRH, data >> 8); eth_enc28j60_set_bank(dev, ENC28J60_REG_MISTAT); do { /* wait 10.24 useconds */ k_busy_wait(D10D24S); eth_enc28j60_read_reg(dev, ENC28J60_REG_MISTAT, &data_mistat); } while ((data_mistat & ENC28J60_BIT_MISTAT_BUSY)); } static void eth_enc28j60_gpio_callback(const struct device *dev, struct gpio_callback *cb, uint32_t pins) { struct eth_enc28j60_runtime *context = CONTAINER_OF(cb, struct eth_enc28j60_runtime, gpio_cb); k_sem_give(&context->int_sem); } static void eth_enc28j60_init_buffers(const struct device *dev) { uint8_t data_estat; /* Reception buffers initialization */ eth_enc28j60_set_bank(dev, ENC28J60_REG_ERXSTL); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXSTL, ENC28J60_RXSTART & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXSTH, ENC28J60_RXSTART >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXRDPTL, ENC28J60_RXSTART & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXRDPTH, ENC28J60_RXSTART >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXNDL, ENC28J60_RXEND & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXNDH, ENC28J60_RXEND >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXSTL, ENC28J60_TXSTART & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXSTH, ENC28J60_TXSTART >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXNDL, ENC28J60_TXEND & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXNDH, ENC28J60_TXEND >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERDPTL, ENC28J60_RXSTART & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERDPTH, ENC28J60_RXSTART >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_EWRPTL, ENC28J60_TXSTART & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_EWRPTH, ENC28J60_TXSTART >> 8); eth_enc28j60_set_bank(dev, ENC28J60_REG_ERXFCON); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXFCON, ENC28J60_RECEIVE_FILTERS); /* Waiting for OST */ do { /* wait 10.24 useconds */ k_busy_wait(D10D24S); eth_enc28j60_read_reg(dev, ENC28J60_REG_ESTAT, &data_estat); } while (!(data_estat & ENC28J60_BIT_ESTAT_CLKRDY)); } static void eth_enc28j60_init_mac(const struct device *dev) { const struct eth_enc28j60_config *config = dev->config; struct eth_enc28j60_runtime *context = dev->data; uint8_t data_macon; eth_enc28j60_set_bank(dev, ENC28J60_REG_MACON1); /* Set MARXEN to enable MAC to receive frames */ eth_enc28j60_read_reg(dev, ENC28J60_REG_MACON1, &data_macon); data_macon |= ENC28J60_BIT_MACON1_MARXEN | ENC28J60_BIT_MACON1_RXPAUS | ENC28J60_BIT_MACON1_TXPAUS; eth_enc28j60_write_reg(dev, ENC28J60_REG_MACON1, data_macon); data_macon = ENC28J60_MAC_CONFIG; if (config->full_duplex) { data_macon |= ENC28J60_BIT_MACON3_FULDPX; } eth_enc28j60_write_reg(dev, ENC28J60_REG_MACON3, data_macon); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAIPGL, ENC28J60_MAC_NBBIPGL); if (config->full_duplex) { eth_enc28j60_write_reg(dev, ENC28J60_REG_MAIPGH, ENC28J60_MAC_NBBIPGH); eth_enc28j60_write_reg(dev, ENC28J60_REG_MABBIPG, ENC28J60_MAC_BBIPG_FD); } else { eth_enc28j60_write_reg(dev, ENC28J60_REG_MABBIPG, ENC28J60_MAC_BBIPG_HD); eth_enc28j60_write_reg(dev, ENC28J60_REG_MACON4, 1 << 6); } /* Configure MAC address */ eth_enc28j60_set_bank(dev, ENC28J60_REG_MAADR1); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAADR6, context->mac_address[5]); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAADR5, context->mac_address[4]); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAADR4, context->mac_address[3]); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAADR3, context->mac_address[2]); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAADR2, context->mac_address[1]); eth_enc28j60_write_reg(dev, ENC28J60_REG_MAADR1, context->mac_address[0]); } static void eth_enc28j60_init_phy(const struct device *dev) { const struct eth_enc28j60_config *config = dev->config; if (config->full_duplex) { eth_enc28j60_write_phy(dev, ENC28J60_PHY_PHCON1, ENC28J60_BIT_PHCON1_PDPXMD); eth_enc28j60_write_phy(dev, ENC28J60_PHY_PHCON2, 0x0); } else { eth_enc28j60_write_phy(dev, ENC28J60_PHY_PHCON1, 0x0); eth_enc28j60_write_phy(dev, ENC28J60_PHY_PHCON2, ENC28J60_BIT_PHCON2_HDLDIS); } } static struct net_if *get_iface(struct eth_enc28j60_runtime *ctx, uint16_t vlan_tag) { #if defined(CONFIG_NET_VLAN) struct net_if *iface; iface = net_eth_get_vlan_iface(ctx->iface, vlan_tag); if (!iface) { return ctx->iface; } return iface; #else ARG_UNUSED(vlan_tag); return ctx->iface; #endif } static int eth_enc28j60_tx(const struct device *dev, struct net_pkt *pkt) { struct eth_enc28j60_runtime *context = dev->data; uint16_t tx_bufaddr = ENC28J60_TXSTART; uint16_t len = net_pkt_get_len(pkt); uint8_t per_packet_control; uint16_t tx_bufaddr_end; struct net_buf *frag; uint8_t tx_end; LOG_DBG("pkt %p (len %u)", pkt, len); k_sem_take(&context->tx_rx_sem, K_FOREVER); /* Latest errata sheet: DS80349C * always reset transmit logic (Errata Issue 12) * the Microchip TCP/IP stack implementation used to first check * whether TXERIF is set and only then reset the transmit logic * but this has been changed in later versions; possibly they * have a reason for this; they don't mention this in the errata * sheet */ eth_enc28j60_set_eth_reg(dev, ENC28J60_REG_ECON1, ENC28J60_BIT_ECON1_TXRST); eth_enc28j60_clear_eth_reg(dev, ENC28J60_REG_ECON1, ENC28J60_BIT_ECON1_TXRST); /* Write the buffer content into the transmission buffer */ eth_enc28j60_set_bank(dev, ENC28J60_REG_ETXSTL); eth_enc28j60_write_reg(dev, ENC28J60_REG_EWRPTL, tx_bufaddr & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_EWRPTH, tx_bufaddr >> 8); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXSTL, tx_bufaddr & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXSTH, tx_bufaddr >> 8); /* Write the data into the buffer */ per_packet_control = ENC28J60_PPCTL_BYTE; eth_enc28j60_write_mem(dev, &per_packet_control, 1); for (frag = pkt->frags; frag; frag = frag->frags) { eth_enc28j60_write_mem(dev, frag->data, frag->len); } tx_bufaddr_end = tx_bufaddr + len; eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXNDL, tx_bufaddr_end & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ETXNDH, tx_bufaddr_end >> 8); /* Signal ENC28J60 to send the buffer */ eth_enc28j60_set_eth_reg(dev, ENC28J60_REG_ECON1, ENC28J60_BIT_ECON1_TXRTS); do { /* wait 10.24 useconds */ k_busy_wait(D10D24S); eth_enc28j60_read_reg(dev, ENC28J60_REG_EIR, &tx_end); tx_end &= ENC28J60_BIT_EIR_TXIF; } while (!tx_end); eth_enc28j60_read_reg(dev, ENC28J60_REG_ESTAT, &tx_end); k_sem_give(&context->tx_rx_sem); if (tx_end & ENC28J60_BIT_ESTAT_TXABRT) { LOG_ERR("TX failed!"); return -EIO; } LOG_DBG("Tx successful"); return 0; } static void enc28j60_read_packet(const struct device *dev, uint16_t *vlan_tag, uint16_t frm_len) { const struct eth_enc28j60_config *config = dev->config; struct eth_enc28j60_runtime *context = dev->data; struct net_buf *pkt_buf; struct net_pkt *pkt; uint16_t lengthfr; uint8_t dummy[4]; /* Get the frame from the buffer */ pkt = net_pkt_rx_alloc_with_buffer(get_iface(context, *vlan_tag), frm_len, AF_UNSPEC, 0, K_MSEC(config->timeout)); if (!pkt) { LOG_ERR("Could not allocate rx buffer"); eth_stats_update_errors_rx(get_iface(context, *vlan_tag)); return; } pkt_buf = pkt->buffer; lengthfr = frm_len; do { size_t frag_len; uint8_t *data_ptr; size_t spi_frame_len; data_ptr = pkt_buf->data; /* Review the space available for the new frag */ frag_len = net_buf_tailroom(pkt_buf); if (frm_len > frag_len) { spi_frame_len = frag_len; } else { spi_frame_len = frm_len; } eth_enc28j60_read_mem(dev, data_ptr, spi_frame_len); net_buf_add(pkt_buf, spi_frame_len); /* One fragment has been written via SPI */ frm_len -= spi_frame_len; pkt_buf = pkt_buf->frags; } while (frm_len > 0); /* Let's pop the useless CRC */ eth_enc28j60_read_mem(dev, dummy, 4); /* Pops one padding byte from spi circular buffer * introduced by the device when the frame length is odd */ if (lengthfr & 0x01) { eth_enc28j60_read_mem(dev, dummy, 1); } #if defined(CONFIG_NET_VLAN) struct net_eth_hdr *hdr = NET_ETH_HDR(pkt); if (ntohs(hdr->type) == NET_ETH_PTYPE_VLAN) { struct net_eth_vlan_hdr *hdr_vlan = (struct net_eth_vlan_hdr *)NET_ETH_HDR(pkt); net_pkt_set_vlan_tci(pkt, ntohs(hdr_vlan->vlan.tci)); *vlan_tag = net_pkt_vlan_tag(pkt); #if CONFIG_NET_TC_RX_COUNT > 1 enum net_priority prio; prio = net_vlan2priority(net_pkt_vlan_priority(pkt)); net_pkt_set_priority(pkt, prio); #endif } else { net_pkt_set_iface(pkt, context->iface); } #else /* CONFIG_NET_VLAN */ net_pkt_set_iface(pkt, context->iface); #endif /* CONFIG_NET_VLAN */ /* Feed buffer frame to IP stack */ LOG_DBG("Received packet of length %u", lengthfr); if (net_recv_data(net_pkt_iface(pkt), pkt) < 0) { net_pkt_unref(pkt); } } static int eth_enc28j60_rx(const struct device *dev, uint16_t *vlan_tag) { struct eth_enc28j60_runtime *context = dev->data; uint8_t counter; /* Errata 6. The Receive Packet Pending Interrupt Flag (EIR.PKTIF) * does not reliably/accurately report the status of pending packet. * Use EPKTCNT register instead. */ eth_enc28j60_set_bank(dev, ENC28J60_REG_EPKTCNT); eth_enc28j60_read_reg(dev, ENC28J60_REG_EPKTCNT, &counter); if (!counter) { return 0; } k_sem_take(&context->tx_rx_sem, K_FOREVER); do { uint16_t frm_len = 0U; uint8_t info[RSV_SIZE]; uint16_t next_packet; uint8_t rdptl = 0U; uint8_t rdpth = 0U; /* remove read fifo address to packet header address */ eth_enc28j60_set_bank(dev, ENC28J60_REG_ERXRDPTL); eth_enc28j60_read_reg(dev, ENC28J60_REG_ERXRDPTL, &rdptl); eth_enc28j60_read_reg(dev, ENC28J60_REG_ERXRDPTH, &rdpth); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERDPTL, rdptl); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERDPTH, rdpth); /* Read address for next packet */ eth_enc28j60_read_mem(dev, info, 2); next_packet = info[0] | (uint16_t)info[1] << 8; /* Errata 14. Even values in ERXRDPT * may corrupt receive buffer. No need adjust next packet if (next_packet == 0) { next_packet = ENC28J60_RXEND; } else if (!(next_packet & 0x01)) { next_packet--; }*/ /* Read reception status vector */ eth_enc28j60_read_mem(dev, info, 4); /* Get the frame length from the rx status vector, * minus CRC size at the end which is always present */ frm_len = sys_get_le16(info) - 4; enc28j60_read_packet(dev, vlan_tag, frm_len); /* Free buffer memory and decrement rx counter */ eth_enc28j60_set_bank(dev, ENC28J60_REG_ERXRDPTL); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXRDPTL, next_packet & 0xFF); eth_enc28j60_write_reg(dev, ENC28J60_REG_ERXRDPTH, next_packet >> 8); eth_enc28j60_set_eth_reg(dev, ENC28J60_REG_ECON2, ENC28J60_BIT_ECON2_PKTDEC); /* Check if there are frames to clean from the buffer */ eth_enc28j60_set_bank(dev, ENC28J60_REG_EPKTCNT); eth_enc28j60_read_reg(dev, ENC28J60_REG_EPKTCNT, &counter); } while (counter); k_sem_give(&context->tx_rx_sem); return 0; } static void eth_enc28j60_rx_thread(const struct device *dev) { struct eth_enc28j60_runtime *context = dev->data; uint16_t vlan_tag = NET_VLAN_TAG_UNSPEC; uint8_t int_stat; while (true) { k_sem_take(&context->int_sem, K_FOREVER); eth_enc28j60_read_reg(dev, ENC28J60_REG_EIR, &int_stat); if (int_stat & ENC28J60_BIT_EIR_PKTIF) { eth_enc28j60_rx(dev, &vlan_tag); /* Clear rx interruption flag */ eth_enc28j60_clear_eth_reg(dev, ENC28J60_REG_EIR, ENC28J60_BIT_EIR_PKTIF | ENC28J60_BIT_EIR_RXERIF); } } } static enum ethernet_hw_caps eth_enc28j60_get_capabilities(const struct device *dev) { ARG_UNUSED(dev); return ETHERNET_LINK_10BASE_T #if defined(CONFIG_NET_VLAN) | ETHERNET_HW_VLAN #endif ; } static void eth_enc28j60_iface_init(struct net_if *iface) { const struct device *dev = net_if_get_device(iface); struct eth_enc28j60_runtime *context = dev->data; net_if_set_link_addr(iface, context->mac_address, sizeof(context->mac_address), NET_LINK_ETHERNET); /* For VLAN, this value is only used to get the correct L2 driver. * The iface pointer in context should contain the main interface * if the VLANs are enabled. */ if (context->iface == NULL) { context->iface = iface; } ethernet_init(iface); } static const struct ethernet_api api_funcs = { .iface_api.init = eth_enc28j60_iface_init, .get_capabilities = eth_enc28j60_get_capabilities, .send = eth_enc28j60_tx, }; static int eth_enc28j60_init(const struct device *dev) { const struct eth_enc28j60_config *config = dev->config; struct eth_enc28j60_runtime *context = dev->data; /* SPI config */ if (!spi_is_ready(&config->spi)) { LOG_ERR("SPI master port %s not ready", config->spi.bus->name); return -EINVAL; } /* Initialize GPIO */ if (!device_is_ready(config->interrupt.port)) { LOG_ERR("GPIO port %s not ready", config->interrupt.port->name); return -EINVAL; } if (gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT)) { LOG_ERR("Unable to configure GPIO pin %u", config->interrupt.pin); return -EINVAL; } gpio_init_callback(&(context->gpio_cb), eth_enc28j60_gpio_callback, BIT(config->interrupt.pin)); if (gpio_add_callback(config->interrupt.port, &(context->gpio_cb))) { return -EINVAL; } gpio_pin_interrupt_configure_dt(&config->interrupt, GPIO_INT_EDGE_TO_ACTIVE); if (eth_enc28j60_soft_reset(dev)) { LOG_ERR("Soft-reset failed"); return -EIO; } /* Errata B7/1 */ k_busy_wait(D10D24S); /* Assign octets not previously taken from devicetree */ context->mac_address[0] = MICROCHIP_OUI_B0; context->mac_address[1] = MICROCHIP_OUI_B1; context->mac_address[2] = MICROCHIP_OUI_B2; eth_enc28j60_init_buffers(dev); eth_enc28j60_init_mac(dev); eth_enc28j60_init_phy(dev); /* Enable interruptions */ eth_enc28j60_set_eth_reg(dev, ENC28J60_REG_EIE, ENC28J60_BIT_EIE_INTIE); eth_enc28j60_set_eth_reg(dev, ENC28J60_REG_EIE, ENC28J60_BIT_EIE_PKTIE); /* Enable Reception */ eth_enc28j60_set_eth_reg(dev, ENC28J60_REG_ECON1, ENC28J60_BIT_ECON1_RXEN); /* Start interruption-poll thread */ k_thread_create(&context->thread, context->thread_stack, CONFIG_ETH_ENC28J60_RX_THREAD_STACK_SIZE, (k_thread_entry_t)eth_enc28j60_rx_thread, (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_ETH_ENC28J60_RX_THREAD_PRIO), 0, K_NO_WAIT); LOG_INF("ENC28J60 Initialized"); return 0; } #ifdef CONFIG_ETH_ENC28J60_0 static struct eth_enc28j60_runtime eth_enc28j60_0_runtime = { .mac_address = DT_INST_PROP(0, local_mac_address), .tx_rx_sem = Z_SEM_INITIALIZER(eth_enc28j60_0_runtime.tx_rx_sem, 1, UINT_MAX), .int_sem = Z_SEM_INITIALIZER(eth_enc28j60_0_runtime.int_sem, 0, UINT_MAX), }; static const struct eth_enc28j60_config eth_enc28j60_0_config = { .spi = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0), .interrupt = GPIO_DT_SPEC_INST_GET(0, int_gpios), .full_duplex = IS_ENABLED(CONFIG_ETH_ENC28J60_0_FULL_DUPLEX), .timeout = CONFIG_ETH_ENC28J60_TIMEOUT, }; ETH_NET_DEVICE_DT_INST_DEFINE(0, eth_enc28j60_init, NULL, ð_enc28j60_0_runtime, ð_enc28j60_0_config, CONFIG_ETH_INIT_PRIORITY, &api_funcs, NET_ETH_MTU); #endif /* CONFIG_ETH_ENC28J60_0 */