/** * @file * * @brief Emulated ADC driver */ /* * Copyright 2021 Google LLC * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT zephyr_adc_emul #include #include #include #include #include #include LOG_MODULE_REGISTER(adc_emul, CONFIG_ADC_LOG_LEVEL); #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #define ADC_EMUL_MAX_RESOLUTION 16 typedef uint16_t adc_emul_res_t; enum adc_emul_input_source { ADC_EMUL_CONST_VALUE, ADC_EMUL_CUSTOM_FUNC, }; /** * @brief Channel of emulated ADC config * * This structure contains configuration of one channel of emulated ADC. */ struct adc_emul_chan_cfg { /** Pointer to function used to obtain input mV */ adc_emul_value_func func; /** Pointer to data that are passed to @a func on call */ void *func_data; /** Constant mV input value */ uint32_t const_value; /** Gain used on output value */ enum adc_gain gain; /** Reference source */ enum adc_reference ref; /** Input source which is used to obtain input value */ enum adc_emul_input_source input; }; /** * @brief Emulated ADC config * * This structure contains constant data for given instance of emulated ADC. */ struct adc_emul_config { /** Number of supported channels */ uint8_t num_channels; }; /** * @brief Emulated ADC data * * This structure contains data structures used by a emulated ADC. */ struct adc_emul_data { /** Structure that handle state of ongoing read operation */ struct adc_context ctx; /** Pointer to ADC emulator own device structure */ const struct device *dev; /** Pointer to memory where next sample will be written */ uint16_t *buf; /** Pointer to where will be data stored in case of repeated sampling */ uint16_t *repeat_buf; /** Mask with channels that will be sampled */ uint32_t channels; /** Mask created from requested resolution in read operation */ uint16_t res_mask; /** Reference voltage for ADC_REF_VDD_1 source */ uint16_t ref_vdd; /** Reference voltage for ADC_REF_EXTERNAL0 source */ uint16_t ref_ext0; /** Reference voltage for ADC_REF_EXTERNAL1 source */ uint16_t ref_ext1; /** Reference voltage for ADC_REF_INTERNAL source */ uint16_t ref_int; /** Array of each channel configuration */ struct adc_emul_chan_cfg *chan_cfg; /** Structure used for acquisition thread */ struct k_thread thread; /** Semaphore used to control acquisition thread */ struct k_sem sem; /** Mutex used to control access to channels config and ref voltages */ struct k_mutex cfg_mtx; /** Stack for acquisition thread */ K_KERNEL_STACK_MEMBER(stack, CONFIG_ADC_EMUL_ACQUISITION_THREAD_STACK_SIZE); }; int adc_emul_const_value_set(const struct device *dev, unsigned int chan, uint32_t value) { const struct adc_emul_config *config = dev->config; struct adc_emul_data *data = dev->data; struct adc_emul_chan_cfg *chan_cfg; if (chan >= config->num_channels) { LOG_ERR("unsupported channel %d", chan); return -EINVAL; } chan_cfg = &data->chan_cfg[chan]; k_mutex_lock(&data->cfg_mtx, K_FOREVER); chan_cfg->input = ADC_EMUL_CONST_VALUE; chan_cfg->const_value = value; k_mutex_unlock(&data->cfg_mtx); return 0; } int adc_emul_value_func_set(const struct device *dev, unsigned int chan, adc_emul_value_func func, void *func_data) { const struct adc_emul_config *config = dev->config; struct adc_emul_data *data = dev->data; struct adc_emul_chan_cfg *chan_cfg; if (chan >= config->num_channels) { LOG_ERR("unsupported channel %d", chan); return -EINVAL; } chan_cfg = &data->chan_cfg[chan]; k_mutex_lock(&data->cfg_mtx, K_FOREVER); chan_cfg->func = func; chan_cfg->func_data = func_data; chan_cfg->input = ADC_EMUL_CUSTOM_FUNC; k_mutex_unlock(&data->cfg_mtx); return 0; } int adc_emul_ref_voltage_set(const struct device *dev, enum adc_reference ref, uint16_t value) { struct adc_driver_api *api = (struct adc_driver_api *)dev->api; struct adc_emul_data *data = dev->data; int err = 0; k_mutex_lock(&data->cfg_mtx, K_FOREVER); switch (ref) { case ADC_REF_VDD_1: data->ref_vdd = value; break; case ADC_REF_INTERNAL: data->ref_int = value; api->ref_internal = value; break; case ADC_REF_EXTERNAL0: data->ref_ext0 = value; break; case ADC_REF_EXTERNAL1: data->ref_ext1 = value; break; default: err = -EINVAL; } k_mutex_unlock(&data->cfg_mtx); return err; } /** * @brief Convert @p ref to reference voltage value in mV * * @param data Internal data of ADC emulator * @param ref Select which reference source should be used * * @return Reference voltage in mV * @return 0 on error */ static uint16_t adc_emul_get_ref_voltage(struct adc_emul_data *data, enum adc_reference ref) { uint16_t voltage; k_mutex_lock(&data->cfg_mtx, K_FOREVER); switch (ref) { case ADC_REF_VDD_1: voltage = data->ref_vdd; break; case ADC_REF_VDD_1_2: voltage = data->ref_vdd / 2; break; case ADC_REF_VDD_1_3: voltage = data->ref_vdd / 3; break; case ADC_REF_VDD_1_4: voltage = data->ref_vdd / 4; break; case ADC_REF_INTERNAL: voltage = data->ref_int; break; case ADC_REF_EXTERNAL0: voltage = data->ref_ext0; break; case ADC_REF_EXTERNAL1: voltage = data->ref_ext1; break; default: voltage = 0; } k_mutex_unlock(&data->cfg_mtx); return voltage; } static int adc_emul_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { const struct adc_emul_config *config = dev->config; struct adc_emul_chan_cfg *emul_chan_cfg; struct adc_emul_data *data = dev->data; if (channel_cfg->channel_id >= config->num_channels) { LOG_ERR("unsupported channel id '%d'", channel_cfg->channel_id); return -ENOTSUP; } if (adc_emul_get_ref_voltage(data, channel_cfg->reference) == 0) { LOG_ERR("unsupported channel reference '%d'", channel_cfg->reference); return -ENOTSUP; } if (channel_cfg->differential) { LOG_ERR("unsupported differential mode"); return -ENOTSUP; } emul_chan_cfg = &data->chan_cfg[channel_cfg->channel_id]; k_mutex_lock(&data->cfg_mtx, K_FOREVER); emul_chan_cfg->gain = channel_cfg->gain; emul_chan_cfg->ref = channel_cfg->reference; k_mutex_unlock(&data->cfg_mtx); return 0; } /** * @brief Check if buffer in @p sequence is big enough to hold all ADC samples * * @param dev ADC emulator device * @param sequence ADC sequence description * * @return 0 on success * @return -ENOMEM if buffer is not big enough */ static int adc_emul_check_buffer_size(const struct device *dev, const struct adc_sequence *sequence) { const struct adc_emul_config *config = dev->config; uint8_t channels = 0; size_t needed; uint32_t mask; for (mask = BIT(config->num_channels - 1); mask != 0; mask >>= 1) { if (mask & sequence->channels) { channels++; } } needed = channels * sizeof(adc_emul_res_t); if (sequence->options) { needed *= (1 + sequence->options->extra_samplings); } if (sequence->buffer_size < needed) { return -ENOMEM; } return 0; } /** * @brief Start processing read request * * @param dev ADC emulator device * @param sequence ADC sequence description * * @return 0 on success * @return -ENOTSUP if requested resolution or channel is out side of supported * range * @return -ENOMEM if buffer is not big enough * (see @ref adc_emul_check_buffer_size) * @return other error code returned by adc_context_wait_for_completion */ static int adc_emul_start_read(const struct device *dev, const struct adc_sequence *sequence) { const struct adc_emul_config *config = dev->config; struct adc_emul_data *data = dev->data; int err; if (sequence->resolution > ADC_EMUL_MAX_RESOLUTION || sequence->resolution == 0) { LOG_ERR("unsupported resolution %d", sequence->resolution); return -ENOTSUP; } if (find_msb_set(sequence->channels) > config->num_channels) { LOG_ERR("unsupported channels in mask: 0x%08x", sequence->channels); return -ENOTSUP; } err = adc_emul_check_buffer_size(dev, sequence); if (err) { LOG_ERR("buffer size too small"); return err; } data->res_mask = BIT_MASK(sequence->resolution); data->buf = sequence->buffer; adc_context_start_read(&data->ctx, sequence); return adc_context_wait_for_completion(&data->ctx); } static int adc_emul_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { struct adc_emul_data *data = dev->data; int err; adc_context_lock(&data->ctx, async ? true : false, async); err = adc_emul_start_read(dev, sequence); adc_context_release(&data->ctx, err); return err; } static int adc_emul_read(const struct device *dev, const struct adc_sequence *sequence) { return adc_emul_read_async(dev, sequence, NULL); } static void adc_context_start_sampling(struct adc_context *ctx) { struct adc_emul_data *data = CONTAINER_OF(ctx, struct adc_emul_data, ctx); data->channels = ctx->sequence.channels; data->repeat_buf = data->buf; k_sem_give(&data->sem); } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct adc_emul_data *data = CONTAINER_OF(ctx, struct adc_emul_data, ctx); if (repeat_sampling) { data->buf = data->repeat_buf; } } /** * @brief Convert input voltage of ADC @p chan to raw output value * * @param data Internal data of ADC emulator * @param chan ADC channel to sample * @param result Raw output value * * @return 0 on success * @return -EINVAL if failed to get reference voltage or unknown input is * selected * @return other error code returned by custom function */ static int adc_emul_get_chan_value(struct adc_emul_data *data, unsigned int chan, adc_emul_res_t *result) { struct adc_emul_chan_cfg *chan_cfg = &data->chan_cfg[chan]; uint32_t input_mV; uint32_t ref_v; uint64_t temp; /* Temporary 64 bit value prevent overflows */ int err = 0; k_mutex_lock(&data->cfg_mtx, K_FOREVER); /* Get input voltage */ switch (chan_cfg->input) { case ADC_EMUL_CONST_VALUE: input_mV = chan_cfg->const_value; break; case ADC_EMUL_CUSTOM_FUNC: err = chan_cfg->func(data->dev, chan, chan_cfg->func_data, &input_mV); if (err) { LOG_ERR("failed to read channel %d (err %d)", chan, err); goto out; } break; default: LOG_ERR("unknown input source %d", chan_cfg->input); err = -EINVAL; goto out; } /* Get reference voltage and apply inverted gain */ ref_v = adc_emul_get_ref_voltage(data, chan_cfg->ref); err = adc_gain_invert(chan_cfg->gain, &ref_v); if (ref_v == 0 || err) { LOG_ERR("failed to get ref voltage (channel %d)", chan); err = -EINVAL; goto out; } /* Calculate output value */ temp = (uint64_t)input_mV * data->res_mask / ref_v; /* If output value is greater than resolution, it has to be trimmed */ if (temp > data->res_mask) { temp = data->res_mask; } *result = temp; out: k_mutex_unlock(&data->cfg_mtx); return err; } /** * @brief Main function of thread which is used to collect samples from * emulated ADC. When adc_context_start_sampling give semaphore, * for each requested channel value function is called. Returned * mV value is converted to output using reference voltage, gain * and requested resolution. * * @param data Internal data of ADC emulator * * @return This thread should not end */ static void adc_emul_acquisition_thread(struct adc_emul_data *data) { int err; while (true) { k_sem_take(&data->sem, K_FOREVER); err = 0; while (data->channels) { adc_emul_res_t result = 0; unsigned int chan = find_lsb_set(data->channels) - 1; LOG_DBG("reading channel %d", chan); err = adc_emul_get_chan_value(data, chan, &result); if (err) { adc_context_complete(&data->ctx, err); break; } LOG_DBG("read channel %d, result = %d", chan, result); *data->buf++ = result; WRITE_BIT(data->channels, chan, 0); } if (!err) { adc_context_on_sampling_done(&data->ctx, data->dev); } } } /** * @brief Function called on init for each ADC emulator device. It setups all * channels to return constant 0 mV and create acquisition thread. * * @param dev ADC emulator device * * @return 0 on success */ static int adc_emul_init(const struct device *dev) { const struct adc_emul_config *config = dev->config; struct adc_emul_data *data = dev->data; int chan; data->dev = dev; k_sem_init(&data->sem, 0, 1); k_mutex_init(&data->cfg_mtx); for (chan = 0; chan < config->num_channels; chan++) { struct adc_emul_chan_cfg *chan_cfg = &data->chan_cfg[chan]; chan_cfg->func = NULL; chan_cfg->func_data = NULL; chan_cfg->input = ADC_EMUL_CONST_VALUE; chan_cfg->const_value = 0; } k_thread_create(&data->thread, data->stack, CONFIG_ADC_EMUL_ACQUISITION_THREAD_STACK_SIZE, (k_thread_entry_t)adc_emul_acquisition_thread, data, NULL, NULL, CONFIG_ADC_EMUL_ACQUISITION_THREAD_PRIO, 0, K_NO_WAIT); adc_context_unlock_unconditionally(&data->ctx); return 0; } #define ADC_EMUL_INIT(_num) \ static struct adc_driver_api adc_emul_api_##_num = { \ .channel_setup = adc_emul_channel_setup, \ .read = adc_emul_read, \ .ref_internal = DT_INST_PROP(_num, ref_internal_mv), \ IF_ENABLED(CONFIG_ADC_ASYNC, \ (.read_async = adc_emul_read_async,)) \ }; \ \ static struct adc_emul_chan_cfg \ adc_emul_ch_cfg_##_num[DT_INST_PROP(_num, nchannels)]; \ \ static const struct adc_emul_config adc_emul_config_##_num = { \ .num_channels = DT_INST_PROP(_num, nchannels), \ }; \ \ static struct adc_emul_data adc_emul_data_##_num = { \ ADC_CONTEXT_INIT_TIMER(adc_emul_data_##_num, ctx), \ ADC_CONTEXT_INIT_LOCK(adc_emul_data_##_num, ctx), \ ADC_CONTEXT_INIT_SYNC(adc_emul_data_##_num, ctx), \ .chan_cfg = adc_emul_ch_cfg_##_num, \ .ref_vdd = DT_INST_PROP(_num, ref_vdd_mv), \ .ref_ext0 = DT_INST_PROP(_num, ref_external0_mv), \ .ref_ext1 = DT_INST_PROP(_num, ref_external1_mv), \ .ref_int = DT_INST_PROP(_num, ref_internal_mv), \ }; \ \ DEVICE_DT_INST_DEFINE(_num, adc_emul_init, NULL, \ &adc_emul_data_##_num, \ &adc_emul_config_##_num, POST_KERNEL, \ CONFIG_ADC_INIT_PRIORITY, \ &adc_emul_api_##_num) DT_INST_FOREACH_STATUS_OKAY(ADC_EMUL_INIT);