/* * Copyright (c) 1997-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include static struct k_spinlock lock; #ifdef CONFIG_OBJECT_TRACING struct k_timer *_trace_list_k_timer; /* * Complete initialization of statically defined timers. */ static int init_timer_module(struct device *dev) { ARG_UNUSED(dev); Z_STRUCT_SECTION_FOREACH(k_timer, timer) { SYS_TRACING_OBJ_INIT(k_timer, timer); } return 0; } SYS_INIT(init_timer_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ /** * @brief Handle expiration of a kernel timer object. * * @param t Timeout used by the timer. * * @return N/A */ void z_timer_expiration_handler(struct _timeout *t) { struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout); struct k_thread *thread; /* * if the timer is periodic, start it again; don't add _TICK_ALIGN * since we're already aligned to a tick boundary */ if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) && !K_TIMEOUT_EQ(timer->period, K_FOREVER)) { z_add_timeout(&timer->timeout, z_timer_expiration_handler, timer->period); } /* update timer's status */ timer->status += 1U; /* invoke timer expiry function */ if (timer->expiry_fn != NULL) { timer->expiry_fn(timer); } thread = z_waitq_head(&timer->wait_q); if (thread == NULL) { return; } /* * Interrupts _DO NOT_ have to be locked in this specific * instance of thread unpending because a) this is the only * place a thread can be taken off this pend queue, and b) the * only place a thread can be put on the pend queue is at * thread level, which of course cannot interrupt the current * context. */ z_unpend_thread_no_timeout(thread); z_ready_thread(thread); arch_thread_return_value_set(thread, 0); } void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn) { timer->expiry_fn = expiry_fn; timer->stop_fn = stop_fn; timer->status = 0U; z_waitq_init(&timer->wait_q); z_init_timeout(&timer->timeout); SYS_TRACING_OBJ_INIT(k_timer, timer); timer->user_data = NULL; z_object_init(timer); } void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period) { if (K_TIMEOUT_EQ(duration, K_FOREVER)) { return; } #ifdef CONFIG_LEGACY_TIMEOUT_API duration = k_ms_to_ticks_ceil32(duration); period = k_ms_to_ticks_ceil32(period); #else /* z_add_timeout() always adds one to the incoming tick count * to round up to the next tick (by convention it waits for * "at least as long as the specified timeout"), but the * period interval is always guaranteed to be reset from * within the timer ISR, so no round up is desired. Subtract * one. * * Note that the duration (!) value gets the same treatment * for backwards compatibility. This is unfortunate * (i.e. k_timer_start() doesn't treat its initial sleep * argument the same way k_sleep() does), but historical. The * timer_api test relies on this behavior. */ if (period.ticks != 0 && Z_TICK_ABS(period.ticks) < 0) { period.ticks = MAX(period.ticks - 1, 1); } if (Z_TICK_ABS(duration.ticks) < 0) { duration.ticks = MAX(duration.ticks - 1, 0); } #endif (void)z_abort_timeout(&timer->timeout); timer->period = period; timer->status = 0U; z_add_timeout(&timer->timeout, z_timer_expiration_handler, duration); } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_start(timer, duration, period); } #include #endif void z_impl_k_timer_stop(struct k_timer *timer) { int inactive = z_abort_timeout(&timer->timeout) != 0; if (inactive) { return; } if (timer->stop_fn != NULL) { timer->stop_fn(timer); } struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q); if (pending_thread != NULL) { z_ready_thread(pending_thread); z_reschedule_unlocked(); } } #ifdef CONFIG_USERSPACE static inline void z_vrfy_k_timer_stop(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_stop(timer); } #include #endif uint32_t z_impl_k_timer_status_get(struct k_timer *timer) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t result = timer->status; timer->status = 0U; k_spin_unlock(&lock, key); return result; } #ifdef CONFIG_USERSPACE static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_status_get(timer); } #include #endif uint32_t z_impl_k_timer_status_sync(struct k_timer *timer) { __ASSERT(!arch_is_in_isr(), ""); k_spinlock_key_t key = k_spin_lock(&lock); uint32_t result = timer->status; if (result == 0U) { if (!z_is_inactive_timeout(&timer->timeout)) { /* wait for timer to expire or stop */ (void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER); /* get updated timer status */ key = k_spin_lock(&lock); result = timer->status; } else { /* timer is already stopped */ } } else { /* timer has already expired at least once */ } timer->status = 0U; k_spin_unlock(&lock, key); return result; } #ifdef CONFIG_USERSPACE static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_status_sync(timer); } #include static inline k_ticks_t z_vrfy_k_timer_remaining_ticks(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_remaining_ticks(timer); } #include static inline k_ticks_t z_vrfy_k_timer_expires_ticks(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_expires_ticks(timer); } #include static inline void *z_vrfy_k_timer_user_data_get(struct k_timer *timer) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); return z_impl_k_timer_user_data_get(timer); } #include static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer, void *user_data) { Z_OOPS(Z_SYSCALL_OBJ(timer, K_OBJ_TIMER)); z_impl_k_timer_user_data_set(timer, user_data); } #include #endif