/* * Copyright (c) 2010-2016 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * * @brief Kernel semaphore object. * * The semaphores are of the 'counting' type, i.e. each 'give' operation will * increment the internal count by 1, if no thread is pending on it. The 'init' * call initializes the count to 'initial_count'. Following multiple 'give' * operations, the same number of 'take' operations can be performed without * the calling thread having to pend on the semaphore, or the calling task * having to poll. */ #include #include #include #include #include #include #include #include #include #include #include /* We use a system-wide lock to synchronize semaphores, which has * unfortunate performance impact vs. using a per-object lock * (semaphores are *very* widely used). But per-object locks require * significant extra RAM. A properly spin-aware semaphore * implementation would spin on atomic access to the count variable, * and not a spinlock per se. Useful optimization for the future... */ static struct k_spinlock lock; #ifdef CONFIG_OBJECT_TRACING struct k_sem *_trace_list_k_sem; /* * Complete initialization of statically defined semaphores. */ static int init_sem_module(struct device *dev) { ARG_UNUSED(dev); Z_STRUCT_SECTION_FOREACH(k_sem, sem) { SYS_TRACING_OBJ_INIT(k_sem, sem); } return 0; } SYS_INIT(init_sem_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); #endif /* CONFIG_OBJECT_TRACING */ void z_impl_k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit) { __ASSERT(limit != 0U, "limit cannot be zero"); __ASSERT(initial_count <= limit, "count cannot be greater than limit"); sys_trace_void(SYS_TRACE_ID_SEMA_INIT); sem->count = initial_count; sem->limit = limit; z_waitq_init(&sem->wait_q); #if defined(CONFIG_POLL) sys_dlist_init(&sem->poll_events); #endif SYS_TRACING_OBJ_INIT(k_sem, sem); z_object_init(sem); sys_trace_end_call(SYS_TRACE_ID_SEMA_INIT); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_sem_init, sem, initial_count, limit) { Z_OOPS(Z_SYSCALL_OBJ_INIT(sem, K_OBJ_SEM)); Z_OOPS(Z_SYSCALL_VERIFY(limit != 0 && initial_count <= limit)); z_impl_k_sem_init((struct k_sem *)sem, initial_count, limit); return 0; } #endif static inline void handle_poll_events(struct k_sem *sem) { #ifdef CONFIG_POLL z_handle_obj_poll_events(&sem->poll_events, K_POLL_STATE_SEM_AVAILABLE); #else ARG_UNUSED(sem); #endif } static inline void increment_count_up_to_limit(struct k_sem *sem) { sem->count += (sem->count != sem->limit) ? 1U : 0U; } static void do_sem_give(struct k_sem *sem) { struct k_thread *thread = z_unpend_first_thread(&sem->wait_q); if (thread != NULL) { z_ready_thread(thread); z_set_thread_return_value(thread, 0); } else { increment_count_up_to_limit(sem); handle_poll_events(sem); } } void z_impl_k_sem_give(struct k_sem *sem) { k_spinlock_key_t key = k_spin_lock(&lock); sys_trace_void(SYS_TRACE_ID_SEMA_GIVE); do_sem_give(sem); sys_trace_end_call(SYS_TRACE_ID_SEMA_GIVE); z_reschedule(&lock, key); } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_sem_give, K_OBJ_SEM, struct k_sem *); #endif int z_impl_k_sem_take(struct k_sem *sem, s32_t timeout) { __ASSERT(((z_is_in_isr() == false) || (timeout == K_NO_WAIT)), ""); sys_trace_void(SYS_TRACE_ID_SEMA_TAKE); k_spinlock_key_t key = k_spin_lock(&lock); if (likely(sem->count > 0U)) { sem->count--; k_spin_unlock(&lock, key); sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE); return 0; } if (timeout == K_NO_WAIT) { k_spin_unlock(&lock, key); sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE); return -EBUSY; } sys_trace_end_call(SYS_TRACE_ID_SEMA_TAKE); int ret = z_pend_curr(&lock, key, &sem->wait_q, timeout); return ret; } #ifdef CONFIG_USERSPACE Z_SYSCALL_HANDLER(k_sem_take, sem, timeout) { Z_OOPS(Z_SYSCALL_OBJ(sem, K_OBJ_SEM)); return z_impl_k_sem_take((struct k_sem *)sem, timeout); } Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_sem_reset, K_OBJ_SEM, struct k_sem *); Z_SYSCALL_HANDLER1_SIMPLE(k_sem_count_get, K_OBJ_SEM, struct k_sem *); #endif