/* * Copyright (c) 2015, Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int _fstat(int fd, struct stat *st); int _read(int fd, void *buf, int nbytes); int _write(int fd, const void *buf, int nbytes); int _open(const char *name, int mode); int _close(int file); int _lseek(int file, int ptr, int dir); int _kill(int pid, int sig); int _getpid(void); #ifndef CONFIG_NEWLIB_LIBC_CUSTOM_SBRK #define LIBC_BSS K_APP_BMEM(z_libc_partition) #define LIBC_DATA K_APP_DMEM(z_libc_partition) /* * End result of this thorny set of ifdefs is to define: * * - HEAP_BASE base address of the heap arena * - MAX_HEAP_SIZE size of the heap arena */ #ifdef CONFIG_MMU #ifdef CONFIG_USERSPACE struct k_mem_partition z_malloc_partition; #endif LIBC_BSS static unsigned char *heap_base; LIBC_BSS static size_t max_heap_size; #define HEAP_BASE heap_base #define MAX_HEAP_SIZE max_heap_size #define USE_MALLOC_PREPARE 1 #elif CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE /* Arena size expressed in Kconfig, due to power-of-two size/align * requirements of certain MPUs. * * We use an automatic memory partition instead of setting this up * in malloc_prepare(). */ K_APPMEM_PARTITION_DEFINE(z_malloc_partition); #define MALLOC_BSS K_APP_BMEM(z_malloc_partition) /* Compiler will throw an error if the provided value isn't a * power of two */ MALLOC_BSS static unsigned char __aligned(CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE) heap_base[CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE]; #define MAX_HEAP_SIZE CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE #define HEAP_BASE heap_base #else /* Not MMU or CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE */ #define USED_RAM_END_ADDR POINTER_TO_UINT(&_end) #ifdef Z_MALLOC_PARTITION_EXISTS /* Start of malloc arena needs to be aligned per MPU * requirements */ struct k_mem_partition z_malloc_partition; #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) #define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, \ CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE) #elif defined(CONFIG_ARC) #define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, \ Z_ARC_MPU_ALIGN) #else #error "Unsupported platform" #endif /* CONFIG_ */ #define USE_MALLOC_PREPARE 1 #else /* End of kernel image */ #define HEAP_BASE USED_RAM_END_ADDR #endif /* End of the malloc arena is the end of physical memory */ #if defined(CONFIG_XTENSA) /* TODO: Why is xtensa a special case? */ extern char _heap_sentry[]; #define MAX_HEAP_SIZE (POINTER_TO_UINT(&_heap_sentry) - \ HEAP_BASE) #else #define MAX_HEAP_SIZE (KB(CONFIG_SRAM_SIZE) - (HEAP_BASE - \ CONFIG_SRAM_BASE_ADDRESS)) #endif /* CONFIG_XTENSA */ #endif static int malloc_prepare(void) { #ifdef USE_MALLOC_PREPARE #ifdef CONFIG_MMU max_heap_size = MIN(CONFIG_NEWLIB_LIBC_MAX_MAPPED_REGION_SIZE, k_mem_free_get()); if (max_heap_size != 0) { heap_base = k_mem_map(max_heap_size, K_MEM_PERM_RW); __ASSERT(heap_base != NULL, "failed to allocate heap of size %zu", max_heap_size); } #endif /* CONFIG_MMU */ #ifdef Z_MALLOC_PARTITION_EXISTS z_malloc_partition.start = (uintptr_t)HEAP_BASE; z_malloc_partition.size = (size_t)MAX_HEAP_SIZE; z_malloc_partition.attr = K_MEM_PARTITION_P_RW_U_RW; #endif /* Z_MALLOC_PARTITION_EXISTS */ #endif /* USE_MALLOC_PREPARE */ /* * Validate that the memory space available for the newlib heap is * greater than the minimum required size. */ __ASSERT(MAX_HEAP_SIZE >= CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE, "memory space available for newlib heap is less than the " "minimum required size specified by " "CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE"); return 0; } SYS_INIT(malloc_prepare, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_LIBC); /* Current offset from HEAP_BASE of unused memory */ LIBC_BSS static size_t heap_sz; #endif /* CONFIG_NEWLIB_LIBC_CUSTOM_SBRK */ static int _stdout_hook_default(int c) { (void)(c); /* Prevent warning about unused argument */ return EOF; } static int (*_stdout_hook)(int) = _stdout_hook_default; void __stdout_hook_install(int (*hook)(int)) { _stdout_hook = hook; } static unsigned char _stdin_hook_default(void) { return 0; } static unsigned char (*_stdin_hook)(void) = _stdin_hook_default; void __stdin_hook_install(unsigned char (*hook)(void)) { _stdin_hook = hook; } int z_impl_zephyr_read_stdin(char *buf, int nbytes) { int i = 0; for (i = 0; i < nbytes; i++) { *(buf + i) = _stdin_hook(); if ((*(buf + i) == '\n') || (*(buf + i) == '\r')) { i++; break; } } return i; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_zephyr_read_stdin(char *buf, int nbytes) { K_OOPS(K_SYSCALL_MEMORY_WRITE(buf, nbytes)); return z_impl_zephyr_read_stdin((char *)buf, nbytes); } #include #endif int z_impl_zephyr_write_stdout(const void *buffer, int nbytes) { const char *buf = buffer; int i; for (i = 0; i < nbytes; i++) { if (*(buf + i) == '\n') { _stdout_hook('\r'); } _stdout_hook(*(buf + i)); } return nbytes; } #ifdef CONFIG_USERSPACE static inline int z_vrfy_zephyr_write_stdout(const void *buf, int nbytes) { K_OOPS(K_SYSCALL_MEMORY_READ(buf, nbytes)); return z_impl_zephyr_write_stdout((const void *)buf, nbytes); } #include #endif #ifndef CONFIG_POSIX_DEVICE_IO int _read(int fd, void *buf, int nbytes) { ARG_UNUSED(fd); return zephyr_read_stdin(buf, nbytes); } __weak FUNC_ALIAS(_read, read, int); int _write(int fd, const void *buf, int nbytes) { ARG_UNUSED(fd); return zephyr_write_stdout(buf, nbytes); } __weak FUNC_ALIAS(_write, write, int); int _open(const char *name, int mode) { return -1; } __weak FUNC_ALIAS(_open, open, int); int _close(int file) { return -1; } __weak FUNC_ALIAS(_close, close, int); #endif /* CONFIG_POSIX_DEVICE_IO */ #ifndef CONFIG_POSIX_FD_MGMT int _lseek(int file, int ptr, int dir) { return 0; } __weak FUNC_ALIAS(_lseek, lseek, int); #endif /* CONFIG_POSIX_FD_MGMT */ int _isatty(int file) { return file <= 2; } __weak FUNC_ALIAS(_isatty, isatty, int); #ifndef CONFIG_POSIX_SIGNALS int _kill(int i, int j) { return 0; } __weak FUNC_ALIAS(_kill, kill, int); #endif /* CONFIG_POSIX_SIGNALS */ #ifndef CONFIG_POSIX_FILE_SYSTEM int _fstat(int file, struct stat *st) { st->st_mode = S_IFCHR; return 0; } __weak FUNC_ALIAS(_fstat, fstat, int); #endif /* CONFIG_POSIX_FILE_SYSTEM */ #ifndef CONFIG_POSIX_MULTI_PROCESS int _getpid(void) { return 0; } __weak FUNC_ALIAS(_getpid, getpid, int); #endif /* CONFIG_POSIX_MULTI_PROCESS */ __weak void _exit(int status) { _write(1, "exit\n", 5); while (1) { ; } } #ifndef CONFIG_NEWLIB_LIBC_CUSTOM_SBRK void *_sbrk(intptr_t count) { void *ret, *ptr; ptr = ((char *)HEAP_BASE) + heap_sz; if ((heap_sz + count) < MAX_HEAP_SIZE) { heap_sz += count; ret = ptr; #ifdef CONFIG_NEWLIB_LIBC_HEAP_LISTENER heap_listener_notify_resize(HEAP_ID_LIBC, ptr, (char *)ptr + count); #endif } else { ret = (void *)-1; } return ret; } __weak FUNC_ALIAS(_sbrk, sbrk, void *); #endif /* CONFIG_NEWLIB_LIBC_CUSTOM_SBRK */ #ifdef CONFIG_MULTITHREADING /* Make sure _RETARGETABLE_LOCKING is enabled in toolchain */ BUILD_ASSERT(IS_ENABLED(_RETARGETABLE_LOCKING), "Retargetable locking must be enabled"); /* * Newlib Retargetable Locking Interface Implementation * * When multithreading is enabled, the newlib retargetable locking interface is * defined below to override the default void implementation and provide the * Zephyr-side locks. * * NOTE: `k_mutex` and `k_sem` are used instead of `sys_mutex` and `sys_sem` * because the latter do not support dynamic allocation for now. */ /* Static locks */ K_MUTEX_DEFINE(__lock___sinit_recursive_mutex); K_MUTEX_DEFINE(__lock___sfp_recursive_mutex); K_MUTEX_DEFINE(__lock___atexit_recursive_mutex); K_MUTEX_DEFINE(__lock___malloc_recursive_mutex); K_MUTEX_DEFINE(__lock___env_recursive_mutex); K_SEM_DEFINE(__lock___at_quick_exit_mutex, 1, 1); K_SEM_DEFINE(__lock___tz_mutex, 1, 1); K_SEM_DEFINE(__lock___dd_hash_mutex, 1, 1); K_SEM_DEFINE(__lock___arc4random_mutex, 1, 1); #ifdef CONFIG_USERSPACE /* Grant public access to all static locks after boot */ static int newlib_locks_prepare(void) { /* Initialise recursive locks */ k_object_access_all_grant(&__lock___sinit_recursive_mutex); k_object_access_all_grant(&__lock___sfp_recursive_mutex); k_object_access_all_grant(&__lock___atexit_recursive_mutex); k_object_access_all_grant(&__lock___malloc_recursive_mutex); k_object_access_all_grant(&__lock___env_recursive_mutex); /* Initialise non-recursive locks */ k_object_access_all_grant(&__lock___at_quick_exit_mutex); k_object_access_all_grant(&__lock___tz_mutex); k_object_access_all_grant(&__lock___dd_hash_mutex); k_object_access_all_grant(&__lock___arc4random_mutex); return 0; } SYS_INIT(newlib_locks_prepare, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); #endif /* CONFIG_USERSPACE */ /* Create a new dynamic non-recursive lock */ void __retarget_lock_init(_LOCK_T *lock) { __ASSERT_NO_MSG(lock != NULL); /* Allocate semaphore object */ #ifndef CONFIG_USERSPACE *lock = malloc(sizeof(struct k_sem)); #else *lock = k_object_alloc(K_OBJ_SEM); #endif /* !CONFIG_USERSPACE */ __ASSERT(*lock != NULL, "non-recursive lock allocation failed"); k_sem_init((struct k_sem *)*lock, 1, 1); #ifdef CONFIG_USERSPACE k_object_access_all_grant(*lock); #endif /* CONFIG_USERSPACE */ } /* Create a new dynamic recursive lock */ void __retarget_lock_init_recursive(_LOCK_T *lock) { __ASSERT_NO_MSG(lock != NULL); /* Allocate mutex object */ #ifndef CONFIG_USERSPACE *lock = malloc(sizeof(struct k_mutex)); #else *lock = k_object_alloc(K_OBJ_MUTEX); #endif /* !CONFIG_USERSPACE */ __ASSERT(*lock != NULL, "recursive lock allocation failed"); k_mutex_init((struct k_mutex *)*lock); #ifdef CONFIG_USERSPACE k_object_access_all_grant(*lock); #endif /* CONFIG_USERSPACE */ } /* Close dynamic non-recursive lock */ void __retarget_lock_close(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); #ifndef CONFIG_USERSPACE free(lock); #else k_object_release(lock); #endif /* !CONFIG_USERSPACE */ } /* Close dynamic recursive lock */ void __retarget_lock_close_recursive(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); #ifndef CONFIG_USERSPACE free(lock); #else k_object_release(lock); #endif /* !CONFIG_USERSPACE */ } /* Acquiure non-recursive lock */ void __retarget_lock_acquire(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); k_sem_take((struct k_sem *)lock, K_FOREVER); } /* Acquiure recursive lock */ void __retarget_lock_acquire_recursive(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); k_mutex_lock((struct k_mutex *)lock, K_FOREVER); } /* Try acquiring non-recursive lock */ int __retarget_lock_try_acquire(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); return !k_sem_take((struct k_sem *)lock, K_NO_WAIT); } /* Try acquiring recursive lock */ int __retarget_lock_try_acquire_recursive(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); return !k_mutex_lock((struct k_mutex *)lock, K_NO_WAIT); } /* Release non-recursive lock */ void __retarget_lock_release(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); k_sem_give((struct k_sem *)lock); } /* Release recursive lock */ void __retarget_lock_release_recursive(_LOCK_T lock) { __ASSERT_NO_MSG(lock != NULL); k_mutex_unlock((struct k_mutex *)lock); } #endif /* CONFIG_MULTITHREADING */ __weak int *__errno(void) { return z_errno(); } /* This function gets called if static buffer overflow detection is enabled * on stdlib side (Newlib here), in case such an overflow is detected. Newlib * provides an implementation not suitable for us, so we override it here. */ __weak FUNC_NORETURN void __chk_fail(void) { static const char chk_fail_msg[] = "* buffer overflow detected *\n"; _write(2, chk_fail_msg, sizeof(chk_fail_msg) - 1); k_oops(); CODE_UNREACHABLE; } #if CONFIG_XTENSA /* The Newlib in xtensa toolchain has a few missing functions for the * reentrant versions of the syscalls. */ _ssize_t _read_r(struct _reent *r, int fd, void *buf, size_t nbytes) { ARG_UNUSED(r); return _read(fd, (char *)buf, nbytes); } _ssize_t _write_r(struct _reent *r, int fd, const void *buf, size_t nbytes) { ARG_UNUSED(r); return _write(fd, buf, nbytes); } int _open_r(struct _reent *r, const char *name, int flags, int mode) { ARG_UNUSED(r); ARG_UNUSED(flags); return _open(name, mode); } int _close_r(struct _reent *r, int file) { ARG_UNUSED(r); return _close(file); } _off_t _lseek_r(struct _reent *r, int file, _off_t ptr, int dir) { ARG_UNUSED(r); return _lseek(file, ptr, dir); } int _isatty_r(struct _reent *r, int file) { ARG_UNUSED(r); return _isatty(file); } int _kill_r(struct _reent *r, int i, int j) { ARG_UNUSED(r); return _kill(i, j); } int _getpid_r(struct _reent *r) { ARG_UNUSED(r); return _getpid(); } int _fstat_r(struct _reent *r, int file, struct stat *st) { ARG_UNUSED(r); return _fstat(file, st); } void _exit_r(struct _reent *r, int status) { ARG_UNUSED(r); _exit(status); } void *_sbrk_r(struct _reent *r, int count) { ARG_UNUSED(r); return _sbrk(count); } #endif /* CONFIG_XTENSA */ int _gettimeofday(struct timeval *__tp, void *__tzp) { #ifdef CONFIG_XSI_SINGLE_PROCESS return gettimeofday(__tp, __tzp); #else /* Non-posix systems should not call gettimeofday() here as it will * result in a recursive call loop and result in a stack overflow. */ return -1; #endif }