/* * Copyright (c) 2016-2017 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ #include #include #include #include #include #include BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO >= K_HIGHEST_APPLICATION_THREAD_PRIO); #ifdef CONFIG_MULTITHREADING #define Z_VALID_PRIO(prio, entry_point) \ (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \ ((K_LOWEST_APPLICATION_THREAD_PRIO \ >= K_HIGHEST_APPLICATION_THREAD_PRIO) \ && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \ && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO)) #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \ __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \ "invalid priority (%d); allowed range: %d to %d", \ (prio), \ K_LOWEST_APPLICATION_THREAD_PRIO, \ K_HIGHEST_APPLICATION_THREAD_PRIO); \ } while (false) #else #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1) #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "") #endif /* CONFIG_MULTITHREADING */ extern struct k_thread _thread_dummy; void z_sched_init(void); void z_move_thread_to_end_of_prio_q(struct k_thread *thread); void z_unpend_thread_no_timeout(struct k_thread *thread); struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q); int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout); void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, k_timeout_t timeout); void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key); void z_reschedule_irqlock(uint32_t key); struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q); void z_unpend_thread(struct k_thread *thread); int z_unpend_all(_wait_q_t *wait_q); bool z_thread_prio_set(struct k_thread *thread, int prio); void *z_get_next_switch_handle(void *interrupted); void z_time_slice(void); void z_reset_time_slice(struct k_thread *curr); void z_sched_ipi(void); void z_sched_start(struct k_thread *thread); void z_ready_thread(struct k_thread *thread); void z_ready_thread_locked(struct k_thread *thread); void z_requeue_current(struct k_thread *curr); struct k_thread *z_swap_next_thread(void); void z_thread_abort(struct k_thread *thread); void move_thread_to_end_of_prio_q(struct k_thread *thread); bool thread_is_sliceable(struct k_thread *thread); static inline void z_reschedule_unlocked(void) { (void) z_reschedule_irqlock(arch_irq_lock()); } static inline bool z_is_under_prio_ceiling(int prio) { return prio >= CONFIG_PRIORITY_CEILING; } static inline int z_get_new_prio_with_ceiling(int prio) { return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING; } static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2) { return prio1 <= prio2; } static inline bool z_is_prio_higher_or_equal(int prio1, int prio2) { return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2); } static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2) { return prio1 >= prio2; } static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2) { return prio1 < prio2; } static inline bool z_is_prio_higher(int prio, int test_prio) { return z_is_prio1_higher_than_prio2(prio, test_prio); } static inline bool z_is_prio_lower_or_equal(int prio1, int prio2) { return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2); } int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2); static inline bool _is_valid_prio(int prio, void *entry_point) { if ((prio == K_IDLE_PRIO) && z_is_idle_thread_entry(entry_point)) { return true; } if (!z_is_prio_higher_or_equal(prio, K_LOWEST_APPLICATION_THREAD_PRIO)) { return false; } if (!z_is_prio_lower_or_equal(prio, K_HIGHEST_APPLICATION_THREAD_PRIO)) { return false; } return true; } static inline void z_sched_lock(void) { __ASSERT(!arch_is_in_isr(), ""); __ASSERT(_current->base.sched_locked != 1U, ""); --_current->base.sched_locked; compiler_barrier(); } /* * APIs for working with the Zephyr kernel scheduler. Intended for use in * management of IPC objects, either in the core kernel or other IPC * implemented by OS compatibility layers, providing basic wait/wake operations * with spinlocks used for synchronization. * * These APIs are public and will be treated as contract, even if the * underlying scheduler implementation changes. */ /** * Wake up a thread pending on the provided wait queue * * Given a wait_q, wake up the highest priority thread on the queue. If the * queue was empty just return false. * * Otherwise, do the following, in order, holding _sched_spinlock the entire * time so that the thread state is guaranteed not to change: * - Set the thread's swap return values to swap_retval and swap_data * - un-pend and ready the thread, but do not invoke the scheduler. * * Repeated calls to this function until it returns false is a suitable * way to wake all threads on the queue. * * It is up to the caller to implement locking such that the return value of * this function (whether a thread was woken up or not) does not immediately * become stale. Calls to wait and wake on the same wait_q object must have * synchronization. Calling this without holding any spinlock is a sign that * this API is not being used properly. * * @param wait_q Wait queue to wake up the highest prio thread * @param swap_retval Swap return value for woken thread * @param swap_data Data return value to supplement swap_retval. May be NULL. * @retval true If a thread was woken up * @retval false If the wait_q was empty */ bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data); /** * Wakes the specified thread. * * Given a specific thread, wake it up. This routine assumes that the given * thread is not on the timeout queue. * * @param thread Given thread to wake up. * @param is_timeout True if called from the timer ISR; false otherwise. * */ void z_sched_wake_thread(struct k_thread *thread, bool is_timeout); /** * Wake up all threads pending on the provided wait queue * * Convenience function to invoke z_sched_wake() on all threads in the queue * until there are no more to wake up. * * @param wait_q Wait queue to wake up the highest prio thread * @param swap_retval Swap return value for woken thread * @param swap_data Data return value to supplement swap_retval. May be NULL. * @retval true If any threads were woken up * @retval false If the wait_q was empty */ static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval, void *swap_data) { bool woken = false; while (z_sched_wake(wait_q, swap_retval, swap_data)) { woken = true; } /* True if we woke at least one thread up */ return woken; } /** * Atomically put the current thread to sleep on a wait queue, with timeout * * The thread will be added to the provided waitqueue. The lock, which should * be held by the caller with the provided key, will be released once this is * completely done and we have swapped out. * * The return value and data pointer is set by whoever woke us up via * z_sched_wake. * * @param lock Address of spinlock to release when we swap out * @param key Key to the provided spinlock when it was locked * @param wait_q Wait queue to go to sleep on * @param timeout Waiting period to be woken up, or K_FOREVER to wait * indefinitely. * @param data Storage location for data pointer set when thread was woken up. * May be NULL if not used. * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout * expired without being woken up. */ int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout, void **data); /** * @brief Walks the wait queue invoking the callback on each waiting thread * * This function walks the wait queue invoking the callback function on each * waiting thread while holding _sched_spinlock. This can be useful for routines * that need to operate on multiple waiting threads. * * CAUTION! As a wait queue is of indeterminate length, the scheduler will be * locked for an indeterminate amount of time. This may impact system * performance. As such, care must be taken when using both this function and * the specified callback. * * @param wait_q Identifies the wait queue to walk * @param func Callback to invoke on each waiting thread * @param data Custom data passed to the callback * * @retval non-zero if walk is terminated by the callback; otherwise 0 */ int z_sched_waitq_walk(_wait_q_t *wait_q, int (*func)(struct k_thread *, void *), void *data); /** @brief Halt thread cycle usage accounting. * * Halts the accumulation of thread cycle usage and adds the current * total to the thread's counter. Called on context switch. * * Note that this function is idempotent. The core kernel code calls * it at the end of interrupt handlers (because that is where we have * a portable hook) where we are context switching, which will include * any cycles spent in the ISR in the per-thread accounting. But * architecture code can also call it earlier out of interrupt entry * to improve measurement fidelity. * * This function assumes local interrupts are masked (so that the * current CPU pointer and current thread are safe to modify), but * requires no other synchronization. Architecture layers don't need * to do anything more. */ void z_sched_usage_stop(void); void z_sched_usage_start(struct k_thread *thread); /** * @brief Retrieves CPU cycle usage data for specified core */ void z_sched_cpu_usage(uint8_t core_id, struct k_thread_runtime_stats *stats); /** * @brief Retrieves thread cycle usage data for specified thread */ void z_sched_thread_usage(struct k_thread *thread, struct k_thread_runtime_stats *stats); static inline void z_sched_usage_switch(struct k_thread *thread) { ARG_UNUSED(thread); #ifdef CONFIG_SCHED_THREAD_USAGE z_sched_usage_stop(); z_sched_usage_start(thread); #endif /* CONFIG_SCHED_THREAD_USAGE */ } #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */