/* * Copyright (c) 1997-2010, 2012-2015 Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * * @brief Semaphore kernel services. */ #include #include #include #include /** * * @brief Update value of semaphore structure * * This routine updates the value of the semaphore by 0 or more units, then * gives the semaphore to any waiting tasks that can now be satisfied. * * @param n Number of additional times semaphore has been given. * @param sema Semaphore structure to update. * * @return N/A */ void _k_sem_struct_value_update(int n, struct _k_sem_struct *S) { struct k_args *A, *X, *Y; #ifdef CONFIG_OBJECT_MONITOR S->count += n; #endif S->level += n; A = S->waiters; Y = NULL; while (A && S->level) { X = A->next; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Comm == _K_SVC_SEM_WAIT_REQUEST || A->Comm == _K_SVC_SEM_WAIT_REPLY_TIMEOUT) #else if (A->Comm == _K_SVC_SEM_WAIT_REQUEST) #endif { S->level--; if (Y) { Y->next = X; } else { S->waiters = X; } #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) { _k_timeout_cancel(A); A->Comm = _K_SVC_SEM_WAIT_REPLY; } else { #endif A->Time.rcode = RC_OK; _k_state_bit_reset(A->Ctxt.task, TF_SEMA); #ifdef CONFIG_SYS_CLOCK_EXISTS } #endif } else if (A->Comm == _K_SVC_SEM_GROUP_WAIT_REQUEST) { S->level--; A->Comm = _K_SVC_SEM_GROUP_WAIT_READY; GETARGS(Y); *Y = *A; SENDARGS(Y); Y = A; } else { Y = A; } A = X; } } void _k_sem_group_wait(struct k_args *R) { struct k_args *A = R->Ctxt.args; FREEARGS(R); if (--(A->args.s1.nsem) == 0) { _k_state_bit_reset(A->Ctxt.task, TF_LIST); } } void _k_sem_group_wait_cancel(struct k_args *A) { struct _k_sem_struct *S = (struct _k_sem_struct *)A->args.s1.sema; struct k_args *X = S->waiters; struct k_args *Y = NULL; while (X && (X->priority <= A->priority)) { if (X->Ctxt.args == A->Ctxt.args) { if (Y) { Y->next = X->next; } else { S->waiters = X->next; } if (X->Comm == _K_SVC_SEM_GROUP_WAIT_REQUEST || X->Comm == _K_SVC_SEM_GROUP_WAIT_READY) { if (X->Comm == _K_SVC_SEM_GROUP_WAIT_READY) { /* obtain struct k_args of waiting task */ struct k_args *waitTaskArgs = X->Ctxt.args; /* * Determine if the wait cancellation request is being * processed after the state of the 'waiters' packet state * has been updated to _K_SVC_SEM_GROUP_WAIT_READY, but before * the _K_SVC_SEM_GROUP_WAIT_READY packet has been processed. * This will occur if a _K_SVC_SEM_GROUP_WAIT_TIMEOUT * timer expiry occurs between the update of the packet state * and the processing of the WAITMRDY packet. */ if (unlikely(waitTaskArgs->args.s1.sema == ENDLIST)) { waitTaskArgs->args.s1.sema = A->args.s1.sema; } else { _k_sem_struct_value_update(1, S); } } _k_sem_group_wait(X); } else { FREEARGS(X); /* ERROR */ } FREEARGS(A); return; } Y = X; X = X->next; } A->next = X; if (Y) { Y->next = A; } else { S->waiters = A; } } void _k_sem_group_wait_accept(struct k_args *A) { struct _k_sem_struct *S = (struct _k_sem_struct *)A->args.s1.sema; struct k_args *X = S->waiters; struct k_args *Y = NULL; while (X && (X->priority <= A->priority)) { if (X->Ctxt.args == A->Ctxt.args) { if (Y) { Y->next = X->next; } else { S->waiters = X->next; } if (X->Comm == _K_SVC_SEM_GROUP_WAIT_READY) { _k_sem_group_wait(X); } else { FREEARGS(X); /* ERROR */ } FREEARGS(A); return; } Y = X; X = X->next; } /* ERROR */ } void _k_sem_group_wait_timeout(struct k_args *A) { ksem_t *L; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) { FREETIMER(A->Time.timer); } #endif L = A->args.s1.list; while (*L != ENDLIST) { struct k_args *R; GETARGS(R); R->priority = A->priority; R->Comm = ((*L == A->args.s1.sema) ? _K_SVC_SEM_GROUP_WAIT_ACCEPT : _K_SVC_SEM_GROUP_WAIT_CANCEL); R->Ctxt.args = A; R->args.s1.sema = *L++; SENDARGS(R); } } void _k_sem_group_ready(struct k_args *R) { struct k_args *A = R->Ctxt.args; if (A->args.s1.sema == ENDLIST) { A->args.s1.sema = R->args.s1.sema; A->Comm = _K_SVC_SEM_GROUP_WAIT_TIMEOUT; #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) { _k_timeout_cancel(A); } else #endif _k_sem_group_wait_timeout(A); } FREEARGS(R); } void _k_sem_wait_reply(struct k_args *A) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.timer) { FREETIMER(A->Time.timer); } if (A->Comm == _K_SVC_SEM_WAIT_REPLY_TIMEOUT) { REMOVE_ELM(A); A->Time.rcode = RC_TIME; } else #endif A->Time.rcode = RC_OK; _k_state_bit_reset(A->Ctxt.task, TF_SEMA); } void _k_sem_wait_reply_timeout(struct k_args *A) { _k_sem_wait_reply(A); } void _k_sem_group_wait_request(struct k_args *A) { struct _k_sem_struct *S = (struct _k_sem_struct *)A->args.s1.sema; struct k_args *X = S->waiters; struct k_args *Y = NULL; while (X && (X->priority <= A->priority)) { if (X->Ctxt.args == A->Ctxt.args) { if (Y) { Y->next = X->next; } else { S->waiters = X->next; } if (X->Comm == _K_SVC_SEM_GROUP_WAIT_CANCEL) { _k_sem_group_wait(X); } else { FREEARGS(X); /* ERROR */ } FREEARGS(A); return; } Y = X; X = X->next; } A->next = X; if (Y) { Y->next = A; } else { S->waiters = A; } _k_sem_struct_value_update(0, S); } void _k_sem_group_wait_any(struct k_args *A) { ksem_t *L; L = A->args.s1.list; A->args.s1.sema = ENDLIST; A->args.s1.nsem = 0; if (*L == ENDLIST) { return; } while (*L != ENDLIST) { struct k_args *R; GETARGS(R); R->priority = _k_current_task->priority; R->Comm = _K_SVC_SEM_GROUP_WAIT_REQUEST; R->Ctxt.args = A; R->args.s1.sema = *L++; SENDARGS(R); (A->args.s1.nsem)++; } A->Ctxt.task = _k_current_task; _k_state_bit_set(_k_current_task, TF_LIST); #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.ticks != TICKS_NONE) { if (A->Time.ticks == TICKS_UNLIMITED) { A->Time.timer = NULL; } else { A->Comm = _K_SVC_SEM_GROUP_WAIT_TIMEOUT; _k_timeout_alloc(A); } } #endif } void _k_sem_wait_request(struct k_args *A) { struct _k_sem_struct *S; uint32_t Sid; Sid = A->args.s1.sema; S = (struct _k_sem_struct *)Sid; if (S->level) { S->level--; A->Time.rcode = RC_OK; } else if (A->Time.ticks != TICKS_NONE) { A->Ctxt.task = _k_current_task; A->priority = _k_current_task->priority; _k_state_bit_set(_k_current_task, TF_SEMA); INSERT_ELM(S->waiters, A); #ifdef CONFIG_SYS_CLOCK_EXISTS if (A->Time.ticks == TICKS_UNLIMITED) { A->Time.timer = NULL; } else { A->Comm = _K_SVC_SEM_WAIT_REPLY_TIMEOUT; _k_timeout_alloc(A); } #endif return; } else { A->Time.rcode = RC_FAIL; } } int task_sem_take(ksem_t sema, int32_t timeout) { struct k_args A; A.Comm = _K_SVC_SEM_WAIT_REQUEST; A.Time.ticks = timeout; A.args.s1.sema = sema; KERNEL_ENTRY(&A); return A.Time.rcode; } ksem_t task_sem_group_take(ksemg_t group, int32_t timeout) { struct k_args A; A.Comm = _K_SVC_SEM_GROUP_WAIT_ANY; A.priority = _k_current_task->priority; A.Time.ticks = timeout; A.args.s1.list = group; KERNEL_ENTRY(&A); return A.args.s1.sema; } void _k_sem_signal(struct k_args *A) { uint32_t Sid = A->args.s1.sema; struct _k_sem_struct *S = (struct _k_sem_struct *)Sid; _k_sem_struct_value_update(1, S); } void _k_sem_group_signal(struct k_args *A) { ksem_t *L = A->args.s1.list; while ((A->args.s1.sema = *L++) != ENDLIST) { _k_sem_signal(A); } } void task_sem_give(ksem_t sema) { struct k_args A; A.Comm = _K_SVC_SEM_SIGNAL; A.args.s1.sema = sema; KERNEL_ENTRY(&A); } void task_sem_group_give(ksemg_t group) { struct k_args A; A.Comm = _K_SVC_SEM_GROUP_SIGNAL; A.args.s1.list = group; KERNEL_ENTRY(&A); } FUNC_ALIAS(isr_sem_give, fiber_sem_give, void); void isr_sem_give(ksem_t sema) { nano_isr_stack_push(&_k_command_stack, (uint32_t)sema | KERNEL_CMD_SEMAPHORE_TYPE); } void _k_sem_reset(struct k_args *A) { uint32_t Sid = A->args.s1.sema; struct _k_sem_struct *S = (struct _k_sem_struct *)Sid; S->level = 0; } void _k_sem_group_reset(struct k_args *A) { ksem_t *L = A->args.s1.list; while ((A->args.s1.sema = *L++) != ENDLIST) { _k_sem_reset(A); } } void task_sem_reset(ksem_t sema) { struct k_args A; A.Comm = _K_SVC_SEM_RESET; A.args.s1.sema = sema; KERNEL_ENTRY(&A); } void task_sem_group_reset(ksemg_t group) { struct k_args A; A.Comm = _K_SVC_SEM_GROUP_RESET; A.args.s1.list = group; KERNEL_ENTRY(&A); } void _k_sem_inquiry(struct k_args *A) { struct _k_sem_struct *S; uint32_t Sid; Sid = A->args.s1.sema; S = (struct _k_sem_struct *)Sid; A->Time.rcode = S->level; } int task_sem_count_get(ksem_t sema) { struct k_args A; A.Comm = _K_SVC_SEM_INQUIRY; A.args.s1.sema = sema; KERNEL_ENTRY(&A); return A.Time.rcode; }