/* * Copyright (c) 2016-2017 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ #include #include #include #include #include BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO >= K_HIGHEST_APPLICATION_THREAD_PRIO); #ifdef CONFIG_MULTITHREADING #define Z_VALID_PRIO(prio, entry_point) \ (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \ ((K_LOWEST_APPLICATION_THREAD_PRIO \ >= K_HIGHEST_APPLICATION_THREAD_PRIO) \ && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \ && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO)) #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \ __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \ "invalid priority (%d); allowed range: %d to %d", \ (prio), \ K_LOWEST_APPLICATION_THREAD_PRIO, \ K_HIGHEST_APPLICATION_THREAD_PRIO); \ } while (false) #else #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1) #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "") #endif void z_sched_init(void); void z_move_thread_to_end_of_prio_q(struct k_thread *thread); void z_remove_thread_from_ready_q(struct k_thread *thread); int z_is_thread_time_slicing(struct k_thread *thread); void z_unpend_thread_no_timeout(struct k_thread *thread); int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, _wait_q_t *wait_q, k_timeout_t timeout); int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout); void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, k_timeout_t timeout); void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key); void z_reschedule_irqlock(uint32_t key); struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q); void z_unpend_thread(struct k_thread *thread); int z_unpend_all(_wait_q_t *wait_q); void z_thread_priority_set(struct k_thread *thread, int prio); bool z_set_prio(struct k_thread *thread, int prio); void *z_get_next_switch_handle(void *interrupted); struct k_thread *z_find_first_thread_to_unpend(_wait_q_t *wait_q, struct k_thread *from); void idle(void *a, void *b, void *c); void z_time_slice(int ticks); void z_reset_time_slice(void); void z_sched_abort(struct k_thread *thread); void z_sched_ipi(void); void z_sched_start(struct k_thread *thread); void z_ready_thread(struct k_thread *thread); static inline void z_pend_curr_unlocked(_wait_q_t *wait_q, k_timeout_t timeout) { (void) z_pend_curr_irqlock(arch_irq_lock(), wait_q, timeout); } static inline void z_reschedule_unlocked(void) { (void) z_reschedule_irqlock(arch_irq_lock()); } /* find which one is the next thread to run */ /* must be called with interrupts locked */ #ifdef CONFIG_SMP extern struct k_thread *z_get_next_ready_thread(void); #else static ALWAYS_INLINE struct k_thread *z_get_next_ready_thread(void) { return _kernel.ready_q.cache; } #endif static inline bool z_is_idle_thread_entry(void *entry_point) { return entry_point == idle; } static inline bool z_is_idle_thread_object(struct k_thread *thread) { #ifdef CONFIG_MULTITHREADING #ifdef CONFIG_SMP return thread->base.is_idle; #else return thread == &z_idle_threads[0]; #endif #else return false; #endif /* CONFIG_MULTITHREADING */ } static inline bool z_is_thread_pending(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_PENDING) != 0U; } static inline bool z_is_thread_prevented_from_running(struct k_thread *thread) { uint8_t state = thread->base.thread_state; return (state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD | _THREAD_DUMMY | _THREAD_SUSPENDED)) != 0U; } static inline bool z_is_thread_timeout_active(struct k_thread *thread) { return !z_is_inactive_timeout(&thread->base.timeout); } static inline bool z_is_thread_ready(struct k_thread *thread) { return !((z_is_thread_prevented_from_running(thread)) != 0 || z_is_thread_timeout_active(thread)); } static inline bool z_has_thread_started(struct k_thread *thread) { return (thread->base.thread_state & _THREAD_PRESTART) == 0U; } static inline bool z_is_thread_state_set(struct k_thread *thread, uint32_t state) { return (thread->base.thread_state & state) != 0U; } static inline bool z_is_thread_queued(struct k_thread *thread) { return z_is_thread_state_set(thread, _THREAD_QUEUED); } static inline void z_mark_thread_as_suspended(struct k_thread *thread) { thread->base.thread_state |= _THREAD_SUSPENDED; sys_trace_thread_suspend(thread); } static inline void z_mark_thread_as_not_suspended(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_SUSPENDED; sys_trace_thread_resume(thread); } static inline void z_mark_thread_as_started(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_PRESTART; } static inline void z_mark_thread_as_pending(struct k_thread *thread) { thread->base.thread_state |= _THREAD_PENDING; } static inline void z_mark_thread_as_not_pending(struct k_thread *thread) { thread->base.thread_state &= ~_THREAD_PENDING; } static inline void z_set_thread_states(struct k_thread *thread, uint32_t states) { thread->base.thread_state |= states; } static inline void z_reset_thread_states(struct k_thread *thread, uint32_t states) { thread->base.thread_state &= ~states; } static inline void z_mark_thread_as_queued(struct k_thread *thread) { z_set_thread_states(thread, _THREAD_QUEUED); } static inline void z_mark_thread_as_not_queued(struct k_thread *thread) { z_reset_thread_states(thread, _THREAD_QUEUED); } static inline bool z_is_under_prio_ceiling(int prio) { return prio >= CONFIG_PRIORITY_CEILING; } static inline int z_get_new_prio_with_ceiling(int prio) { return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING; } static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2) { return prio1 <= prio2; } static inline bool z_is_prio_higher_or_equal(int prio1, int prio2) { return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2); } static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2) { return prio1 >= prio2; } static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2) { return prio1 < prio2; } static inline bool z_is_prio_higher(int prio, int test_prio) { return z_is_prio1_higher_than_prio2(prio, test_prio); } static inline bool z_is_prio_lower_or_equal(int prio1, int prio2) { return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2); } bool z_is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2); static inline bool _is_valid_prio(int prio, void *entry_point) { if (prio == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) { return true; } if (!z_is_prio_higher_or_equal(prio, K_LOWEST_APPLICATION_THREAD_PRIO)) { return false; } if (!z_is_prio_lower_or_equal(prio, K_HIGHEST_APPLICATION_THREAD_PRIO)) { return false; } return true; } static inline void _ready_one_thread(_wait_q_t *wq) { struct k_thread *thread = z_unpend_first_thread(wq); if (thread != NULL) { z_ready_thread(thread); } } static inline void z_sched_lock(void) { #ifdef CONFIG_PREEMPT_ENABLED __ASSERT(!arch_is_in_isr(), ""); __ASSERT(_current->base.sched_locked != 1, ""); --_current->base.sched_locked; compiler_barrier(); #endif } static ALWAYS_INLINE void z_sched_unlock_no_reschedule(void) { #ifdef CONFIG_PREEMPT_ENABLED __ASSERT(!arch_is_in_isr(), ""); __ASSERT(_current->base.sched_locked != 0, ""); compiler_barrier(); ++_current->base.sched_locked; #endif } static ALWAYS_INLINE bool z_is_thread_timeout_expired(struct k_thread *thread) { #ifdef CONFIG_SYS_CLOCK_EXISTS return thread->base.timeout.dticks == _EXPIRED; #else return 0; #endif } static inline struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q) { struct k_thread *thread = z_find_first_thread_to_unpend(wait_q, NULL); if (thread != NULL) { z_unpend_thread_no_timeout(thread); } return thread; } #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */