/* * Copyright 2022 NXP * Copyright 2022 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include static int strtomicro(char *inp, char units, int32_t *val) { size_t len, start, end; int32_t mult, decdiv = 1; len = strlen(inp); if (len < 2) { return -EINVAL; } /* suffix */ if (tolower(inp[len - 1]) != units) { return -EINVAL; } if ((len > 2) && (inp[len - 2] == 'u')) { mult = 1; end = len - 3; } else if ((len > 2) && (inp[len - 2] == 'm')) { mult = 1000; end = len - 3; } else if (isdigit((unsigned char)inp[len - 2]) > 0) { mult = 1000000; end = len - 2; } else { return -EINVAL; } /* optional prefix (sign) */ if (inp[0] == '-') { mult *= -1; start = 1; } else if (inp[0] == '+') { start = 1; } else { start = 0; } /* numeric part */ *val = 0; for (size_t i = start; (i <= end) && (decdiv <= mult); i++) { if (isdigit((unsigned char)inp[i]) > 0) { *val = *val * 10 / decdiv + (int32_t)(inp[i] - '0') * mult / decdiv; if (decdiv > 1) { mult /= 10; } } else if (inp[i] == '.') { decdiv = 10; } else { return -EINVAL; } } return 0; } static void microtoshell(const struct shell *sh, char unit, int32_t val) { if (val > 100000) { shell_print(sh, "%d.%06d %c", val / 1000000, val % 1000000, unit); } else if (val > 1000) { shell_print(sh, "%d.%03d m%c", val / 1000, val % 1000, unit); } else { shell_print(sh, "%d u%c", val, unit); } } static int cmd_enable(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_enable(dev); if (ret < 0) { shell_error(sh, "Could not enable regulator (%d)", ret); return ret; } return 0; } static int cmd_disable(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_disable(dev); if (ret < 0) { shell_error(sh, "Could not disable regulator (%d)", ret); return ret; } return 0; } static int cmd_is_enabled(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } if (regulator_is_enabled(dev)) { shell_print(sh, "Regulator is enabled"); } else { shell_print(sh, "Regulator is disabled"); } return 0; } static int cmd_vlist(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; unsigned int volt_cnt; int32_t last_volt_uv = 0; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } volt_cnt = regulator_count_voltages(dev); for (unsigned int i = 0U; i < volt_cnt; i++) { int32_t volt_uv; (void)regulator_list_voltage(dev, i, &volt_uv); /* do not print repeated voltages */ if ((i == 0U) || (last_volt_uv != volt_uv)) { microtoshell(sh, 'V', volt_uv); } last_volt_uv = volt_uv; } return 0; } static int cmd_vset(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int32_t min_uv, max_uv; int ret; dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = strtomicro(argv[2], 'v', &min_uv); if (ret < 0) { shell_error(sh, "Invalid min. voltage: %s", argv[2]); return ret; } if (argc == 4) { ret = strtomicro(argv[3], 'v', &max_uv); if (ret < 0) { shell_error(sh, "Invalid max. voltage: %s", argv[3]); return ret; } } else { max_uv = min_uv; } ret = regulator_set_voltage(dev, min_uv, max_uv); if (ret < 0) { shell_error(sh, "Could not set voltage (%d)", ret); return ret; } return 0; } static int cmd_vget(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int32_t volt_uv; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_get_voltage(dev, &volt_uv); if (ret < 0) { shell_error(sh, "Could not get voltage (%d)", ret); return ret; } microtoshell(sh, 'V', volt_uv); return 0; } static int cmd_clist(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; unsigned int current_cnt; int32_t last_current_ua; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } current_cnt = regulator_count_current_limits(dev); for (unsigned int i = 0U; i < current_cnt; i++) { int32_t current_ua; (void)regulator_list_current_limit(dev, i, ¤t_ua); /* do not print repeated current limits */ if ((i == 0U) || (last_current_ua != current_ua)) { microtoshell(sh, 'A', current_ua); } last_current_ua = current_ua; } return 0; } static int cmd_iset(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int32_t min_ua, max_ua; int ret; dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = strtomicro(argv[2], 'a', &min_ua); if (ret < 0) { shell_error(sh, "Invalid min. current: %s", argv[2]); return ret; } if (argc == 4) { ret = strtomicro(argv[3], 'a', &max_ua); if (ret < 0) { shell_error(sh, "Invalid max. current: %s", argv[3]); return ret; } } else { max_ua = min_ua; } ret = regulator_set_current_limit(dev, min_ua, max_ua); if (ret < 0) { shell_error(sh, "Could not set current limit (%d)", ret); return ret; } return 0; } static int cmd_iget(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int32_t curr_ua; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_get_current_limit(dev, &curr_ua); if (ret < 0) { shell_error(sh, "Could not get current limit (%d)", ret); return ret; } microtoshell(sh, 'A', curr_ua); return 0; } static int cmd_modeset(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; regulator_mode_t mode; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } mode = (regulator_mode_t)strtoul(argv[2], NULL, 10); ret = regulator_set_mode(dev, mode); if (ret < 0) { shell_error(sh, "Could not set mode (%d)", ret); return ret; } return 0; } static int cmd_modeget(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; regulator_mode_t mode; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_get_mode(dev, &mode); if (ret < 0) { shell_error(sh, "Could not get mode (%d)", ret); return ret; } shell_print(sh, "Mode: %u", (unsigned int)mode); return 0; } static int cmd_adset(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; bool ad; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } if (strcmp(argv[2], "enable") == 0) { ad = true; } else if (strcmp(argv[2], "disable") == 0) { ad = false; } else { shell_error(sh, "Invalid parameter"); return -EINVAL; } ret = regulator_set_active_discharge(dev, ad); if (ret < 0) { shell_error(sh, "Could not set active discharge (%d)", ret); return ret; } return 0; } static int cmd_adget(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; bool ad; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_get_active_discharge(dev, &ad); if (ret < 0) { shell_error(sh, "Could not get active discharge (%d)", ret); return ret; } shell_print(sh, "Active Discharge: %s", ad ? "enabled" : "disabled"); return 0; } static int cmd_errors(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; regulator_error_flags_t errors; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_get_error_flags(dev, &errors); if (ret < 0) { shell_error(sh, "Could not get error flags (%d)", ret); return ret; } shell_print(sh, "Overvoltage:\t[%s]", ((errors & REGULATOR_ERROR_OVER_VOLTAGE) != 0U) ? "X" : " "); shell_print(sh, "Overcurrent:\t[%s]", ((errors & REGULATOR_ERROR_OVER_CURRENT) != 0U) ? "X" : " "); shell_print(sh, "Overtemp.:\t[%s]", ((errors & REGULATOR_ERROR_OVER_TEMP) != 0U) ? "X" : " "); return 0; } static int cmd_dvsset(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int ret = 0; regulator_dvs_state_t state; dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } state = shell_strtoul(argv[2], 10, &ret); if (ret < 0) { shell_error(sh, "Could not parse state (%d)", ret); return ret; } ret = regulator_parent_dvs_state_set(dev, state); if (ret < 0) { shell_error(sh, "Could not set DVS state (%d)", ret); return ret; } return 0; } static int cmd_shipmode(const struct shell *sh, size_t argc, char **argv) { const struct device *dev; int ret; ARG_UNUSED(argc); dev = device_get_binding(argv[1]); if (dev == NULL) { shell_error(sh, "Regulator device %s not available", argv[1]); return -ENODEV; } ret = regulator_parent_ship_mode(dev); if (ret < 0) { shell_error(sh, "Could not enable ship mode (%d)", ret); return ret; } return 0; } static void device_name_get(size_t idx, struct shell_static_entry *entry) { const struct device *dev = shell_device_lookup(idx, NULL); entry->syntax = (dev != NULL) ? dev->name : NULL; entry->handler = NULL; entry->help = NULL; entry->subcmd = NULL; } SHELL_DYNAMIC_CMD_CREATE(dsub_device_name, device_name_get); SHELL_STATIC_SUBCMD_SET_CREATE( sub_regulator_cmds, SHELL_CMD_ARG(enable, &dsub_device_name, "Enable regulator\n" "Usage: enable ", cmd_enable, 2, 0), SHELL_CMD_ARG(disable, &dsub_device_name, "Disable regulator\n" "Usage: disable ", cmd_disable, 2, 0), SHELL_CMD_ARG(is_enabled, &dsub_device_name, "Report whether regulator is enabled or disabled\n" "Usage: is_enabled ", cmd_is_enabled, 2, 0), SHELL_CMD_ARG(vlist, &dsub_device_name, "List all supported voltages\n" "Usage: vlist ", cmd_vlist, 2, 0), SHELL_CMD_ARG(vset, &dsub_device_name, "Set voltage\n" "Input requires units, e.g. 200mv, 20.5mv, 10uv, 1v...\n" "Usage: vset []\n" "If maximum is not set, exact voltage will be requested", cmd_vset, 3, 1), SHELL_CMD_ARG(vget, &dsub_device_name, "Get voltage\n" "Usage: vget ", cmd_vget, 2, 0), SHELL_CMD_ARG(clist, &dsub_device_name, "List all supported current limits\n" "Usage: clist ", cmd_clist, 2, 0), SHELL_CMD_ARG(iset, &dsub_device_name, "Set current limit\n" "Input requires units, e.g. 200ma, 20.5ma, 10ua, 1a...\n" "Usage: iset []" "If maximum is not set, exact current will be requested", cmd_iset, 3, 1), SHELL_CMD_ARG(iget, &dsub_device_name, "Get current limit\n" "Usage: iget ", cmd_iget, 2, 0), SHELL_CMD_ARG(modeset, &dsub_device_name, "Set regulator mode\n" "Usage: modeset ", cmd_modeset, 3, 0), SHELL_CMD_ARG(modeget, &dsub_device_name, "Get regulator mode\n" "Usage: modeget ", cmd_modeget, 2, 0), SHELL_CMD_ARG(adset, NULL, "Set active discharge\n" "Usage: adset ", cmd_adset, 3, 0), SHELL_CMD_ARG(adget, NULL, "Get active discharge\n" "Usage: adget ", cmd_adget, 2, 0), SHELL_CMD_ARG(errors, &dsub_device_name, "Get errors\n" "Usage: errors ", cmd_errors, 2, 0), SHELL_CMD_ARG(dvsset, &dsub_device_name, "Set regulator dynamic voltage scaling state\n" "Usage: dvsset ", cmd_dvsset, 3, 0), SHELL_CMD_ARG(shipmode, &dsub_device_name, "Enable regulator ship mode\n" "Usage: shipmode ", cmd_shipmode, 2, 0), SHELL_SUBCMD_SET_END); SHELL_CMD_REGISTER(regulator, &sub_regulator_cmds, "Regulator playground", NULL);