/* * Copyright (c) 2021 BayLibre, SAS * * SPDX-License-Identifier: Apache-2.0 */ #include LOG_MODULE_REGISTER(pcie_ecam, LOG_LEVEL_ERR); #include #include #include #include #ifdef CONFIG_GIC_V3_ITS #include #endif #define DT_DRV_COMPAT pci_host_ecam_generic /* * PCIe Controllers Regions * * TOFIX: * - handle prefetchable regions */ enum pcie_region_type { PCIE_REGION_IO = 0, PCIE_REGION_MEM, PCIE_REGION_MEM64, PCIE_REGION_MAX, }; struct pcie_ecam_data { uintptr_t cfg_phys_addr; mm_reg_t cfg_addr; size_t cfg_size; struct { uintptr_t phys_start; uintptr_t bus_start; size_t size; size_t allocation_offset; } regions[PCIE_REGION_MAX]; }; static int pcie_ecam_init(const struct device *dev) { const struct pcie_ctrl_config *cfg = dev->config; struct pcie_ecam_data *data = dev->data; int i; /* * Flags defined in the PCI Bus Binding to IEEE Std 1275-1994 : * Bit# 33222222 22221111 11111100 00000000 * 10987654 32109876 54321098 76543210 * * phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr * phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh * phys.lo cell: llllllll llllllll llllllll llllllll * * where: * * n is 0 if the address is relocatable, 1 otherwise * p is 1 if the addressable region is "prefetchable", 0 otherwise * t is 1 if the address is aliased (for non-relocatable I/O), below 1 MB (for Memory), * or below 64 KB (for relocatable I/O). * ss is the space code, denoting the address space * 00 denotes Configuration Space * 01 denotes I/O Space * 10 denotes 32-bit-address Memory Space * 11 denotes 64-bit-address Memory Space * bbbbbbbb is the 8-bit Bus Number * ddddd is the 5-bit Device Number * fff is the 3-bit Function Number * rrrrrrrr is the 8-bit Register Number * hh...hh is a 32-bit unsigned number * ll...ll is a 32-bit unsigned number * for I/O Space is the 32-bit offset from the start of the region * for 32-bit-address Memory Space is the 32-bit offset from the start of the region * for 64-bit-address Memory Space is the 64-bit offset from the start of the region * * Here we only handle the p, ss, hh and ll fields. * * TOFIX: * - handle prefetchable bit */ for (i = 0 ; i < cfg->ranges_count ; ++i) { switch ((cfg->ranges[i].flags >> 24) & 0x03) { case 0x01: data->regions[PCIE_REGION_IO].bus_start = cfg->ranges[i].pcie_bus_addr; data->regions[PCIE_REGION_IO].phys_start = cfg->ranges[i].host_map_addr; data->regions[PCIE_REGION_IO].size = cfg->ranges[i].map_length; /* Linux & U-Boot avoids allocating PCI resources from address 0 */ if (data->regions[PCIE_REGION_IO].bus_start < 0x1000) { data->regions[PCIE_REGION_IO].allocation_offset = 0x1000; } break; case 0x02: data->regions[PCIE_REGION_MEM].bus_start = cfg->ranges[i].pcie_bus_addr; data->regions[PCIE_REGION_MEM].phys_start = cfg->ranges[i].host_map_addr; data->regions[PCIE_REGION_MEM].size = cfg->ranges[i].map_length; /* Linux & U-Boot avoids allocating PCI resources from address 0 */ if (data->regions[PCIE_REGION_MEM].bus_start < 0x1000) { data->regions[PCIE_REGION_MEM].allocation_offset = 0x1000; } break; case 0x03: data->regions[PCIE_REGION_MEM64].bus_start = cfg->ranges[i].pcie_bus_addr; data->regions[PCIE_REGION_MEM64].phys_start = cfg->ranges[i].host_map_addr; data->regions[PCIE_REGION_MEM64].size = cfg->ranges[i].map_length; /* Linux & U-Boot avoids allocating PCI resources from address 0 */ if (data->regions[PCIE_REGION_MEM64].bus_start < 0x1000) { data->regions[PCIE_REGION_MEM64].allocation_offset = 0x1000; } break; } } if (!data->regions[PCIE_REGION_IO].size && !data->regions[PCIE_REGION_MEM].size && !data->regions[PCIE_REGION_MEM64].size) { LOG_ERR("No regions defined"); return -EINVAL; } /* Get Config address space physical address & size */ data->cfg_phys_addr = cfg->cfg_addr; data->cfg_size = cfg->cfg_size; if (data->regions[PCIE_REGION_IO].size) { LOG_DBG("IO bus [0x%lx - 0x%lx, size 0x%lx]", data->regions[PCIE_REGION_IO].bus_start, (data->regions[PCIE_REGION_IO].bus_start + data->regions[PCIE_REGION_IO].size - 1), data->regions[PCIE_REGION_IO].size); LOG_DBG("IO space [0x%lx - 0x%lx, size 0x%lx]", data->regions[PCIE_REGION_IO].phys_start, (data->regions[PCIE_REGION_IO].phys_start + data->regions[PCIE_REGION_IO].size - 1), data->regions[PCIE_REGION_IO].size); } if (data->regions[PCIE_REGION_MEM].size) { LOG_DBG("MEM bus [0x%lx - 0x%lx, size 0x%lx]", data->regions[PCIE_REGION_MEM].bus_start, (data->regions[PCIE_REGION_MEM].bus_start + data->regions[PCIE_REGION_MEM].size - 1), data->regions[PCIE_REGION_MEM].size); LOG_DBG("MEM space [0x%lx - 0x%lx, size 0x%lx]", data->regions[PCIE_REGION_MEM].phys_start, (data->regions[PCIE_REGION_MEM].phys_start + data->regions[PCIE_REGION_MEM].size - 1), data->regions[PCIE_REGION_MEM].size); } if (data->regions[PCIE_REGION_MEM64].size) { LOG_DBG("MEM64 bus [0x%lx - 0x%lx, size 0x%lx]", data->regions[PCIE_REGION_MEM64].bus_start, (data->regions[PCIE_REGION_MEM64].bus_start + data->regions[PCIE_REGION_MEM64].size - 1), data->regions[PCIE_REGION_MEM64].size); LOG_DBG("MEM64 space [0x%lx - 0x%lx, size 0x%lx]", data->regions[PCIE_REGION_MEM64].phys_start, (data->regions[PCIE_REGION_MEM64].phys_start + data->regions[PCIE_REGION_MEM64].size - 1), data->regions[PCIE_REGION_MEM64].size); } /* Map config space to be used by the pcie_generic_ctrl_conf_read/write callbacks */ device_map(&data->cfg_addr, data->cfg_phys_addr, data->cfg_size, K_MEM_CACHE_NONE); LOG_DBG("Config space [0x%lx - 0x%lx, size 0x%lx]", data->cfg_phys_addr, (data->cfg_phys_addr + data->cfg_size - 1), data->cfg_size); LOG_DBG("Config mapped [0x%lx - 0x%lx, size 0x%lx]", data->cfg_addr, (data->cfg_addr + data->cfg_size - 1), data->cfg_size); pcie_generic_ctrl_enumerate(dev, PCIE_BDF(0, 0, 0)); return 0; } static uint32_t pcie_ecam_ctrl_conf_read(const struct device *dev, pcie_bdf_t bdf, unsigned int reg) { struct pcie_ecam_data *data = dev->data; return pcie_generic_ctrl_conf_read(data->cfg_addr, bdf, reg); } static void pcie_ecam_ctrl_conf_write(const struct device *dev, pcie_bdf_t bdf, unsigned int reg, uint32_t reg_data) { struct pcie_ecam_data *data = dev->data; pcie_generic_ctrl_conf_write(data->cfg_addr, bdf, reg, reg_data); } static bool pcie_ecam_region_allocate_type(struct pcie_ecam_data *data, pcie_bdf_t bdf, size_t bar_size, uintptr_t *bar_bus_addr, enum pcie_region_type type) { uintptr_t addr; addr = (((data->regions[type].bus_start + data->regions[type].allocation_offset) - 1) | ((bar_size) - 1)) + 1; if (addr - data->regions[type].bus_start + bar_size > data->regions[type].size) { return false; } *bar_bus_addr = addr; data->regions[type].allocation_offset = addr - data->regions[type].bus_start + bar_size; return true; } static bool pcie_ecam_region_allocate(const struct device *dev, pcie_bdf_t bdf, bool mem, bool mem64, size_t bar_size, uintptr_t *bar_bus_addr) { struct pcie_ecam_data *data = dev->data; enum pcie_region_type type; if (mem && !data->regions[PCIE_REGION_MEM64].size && !data->regions[PCIE_REGION_MEM].size) { LOG_DBG("bdf %x no mem region defined for allocation", bdf); return false; } if (!mem && !data->regions[PCIE_REGION_IO].size) { LOG_DBG("bdf %x no io region defined for allocation", bdf); return false; } /* * Allocate into mem64 region if available or is the only available * * TOFIX: * - handle allocation from/to mem/mem64 when a region is full */ if (mem && ((mem64 && data->regions[PCIE_REGION_MEM64].size) || (data->regions[PCIE_REGION_MEM64].size && !data->regions[PCIE_REGION_MEM].size))) { type = PCIE_REGION_MEM64; } else if (mem) { type = PCIE_REGION_MEM; } else { type = PCIE_REGION_IO; } return pcie_ecam_region_allocate_type(data, bdf, bar_size, bar_bus_addr, type); } static bool pcie_ecam_region_get_allocate_base(const struct device *dev, pcie_bdf_t bdf, bool mem, bool mem64, size_t align, uintptr_t *bar_base_addr) { struct pcie_ecam_data *data = (struct pcie_ecam_data *)dev->data; enum pcie_region_type type; if (mem && !data->regions[PCIE_REGION_MEM64].size && !data->regions[PCIE_REGION_MEM].size) { LOG_DBG("bdf %x no mem region defined for allocation", bdf); return false; } if (!mem && !data->regions[PCIE_REGION_IO].size) { LOG_DBG("bdf %x no io region defined for allocation", bdf); return false; } /* * Allocate into mem64 region if available or is the only available * * TOFIX: * - handle allocation from/to mem/mem64 when a region is full */ if (mem && ((mem64 && data->regions[PCIE_REGION_MEM64].size) || (data->regions[PCIE_REGION_MEM64].size && !data->regions[PCIE_REGION_MEM].size))) { type = PCIE_REGION_MEM64; } else if (mem) { type = PCIE_REGION_MEM; } else { type = PCIE_REGION_IO; } *bar_base_addr = (((data->regions[type].bus_start + data->regions[type].allocation_offset) - 1) | ((align) - 1)) + 1; return true; } static bool pcie_ecam_region_translate(const struct device *dev, pcie_bdf_t bdf, bool mem, bool mem64, uintptr_t bar_bus_addr, uintptr_t *bar_addr) { struct pcie_ecam_data *data = dev->data; enum pcie_region_type type; /* Means it hasn't been allocated */ if (!bar_bus_addr) { return false; } if (mem && ((mem64 && data->regions[PCIE_REGION_MEM64].size) || (data->regions[PCIE_REGION_MEM64].size && !data->regions[PCIE_REGION_MEM].size))) { type = PCIE_REGION_MEM64; } else if (mem) { type = PCIE_REGION_MEM; } else { type = PCIE_REGION_IO; } *bar_addr = data->regions[type].phys_start + (bar_bus_addr - data->regions[type].bus_start); return true; } #if CONFIG_PCIE_MSI static uint8_t pcie_ecam_msi_device_setup(const struct device *dev, unsigned int priority, msi_vector_t *vectors, uint8_t n_vector) { #ifdef CONFIG_GIC_V3_ITS const struct pcie_ctrl_config *cfg = (const struct pcie_ctrl_config *)dev->config; unsigned int device_id; pcie_bdf_t bdf; int ret, i; if (!n_vector) { return 0; } bdf = vectors[0].bdf; /* We do not support allocating vectors for multiple BDFs for now, * This would need tracking vectors already allocated for a BDF and * re-allocating a proper table in ITS for each BDF since we can't be * sure more vectors for each BDF will be allocated later. * Simply bail-out if it's the case here. */ for (i = 1; i < n_vector; i++) { if (vectors[i].bdf != bdf) { LOG_ERR("Multiple BDFs in a single MSI vector allocation isn't supported"); return 0; } } device_id = PCI_BDF_TO_DEVID(bdf); ret = its_setup_deviceid(cfg->msi_parent, device_id, n_vector); if (ret) { return 0; } for (i = 0; i < n_vector; i++) { vectors[i].arch.irq = its_alloc_intid(cfg->msi_parent); vectors[i].arch.address = its_get_msi_addr(cfg->msi_parent); vectors[i].arch.eventid = i; vectors[i].arch.priority = priority; ret = its_map_intid(cfg->msi_parent, device_id, vectors[i].arch.eventid, vectors[i].arch.irq); if (ret) { break; } } return i; #else return 0; #endif } #endif static const struct pcie_ctrl_driver_api pcie_ecam_api = { .conf_read = pcie_ecam_ctrl_conf_read, .conf_write = pcie_ecam_ctrl_conf_write, .region_allocate = pcie_ecam_region_allocate, .region_get_allocate_base = pcie_ecam_region_get_allocate_base, .region_translate = pcie_ecam_region_translate, #if CONFIG_PCIE_MSI .msi_device_setup = pcie_ecam_msi_device_setup, #endif }; #if CONFIG_PCIE_MSI #define DEVICE_DT_GET_MSI_PARENT(n) \ .msi_parent = DEVICE_DT_GET(DT_PHANDLE(DT_DRV_INST(n), msi_parent)), #else #define DEVICE_DT_GET_MSI_PARENT(n) #endif #define PCIE_ECAM_INIT(n) \ static struct pcie_ecam_data pcie_ecam_data##n; \ static const struct pcie_ctrl_config pcie_ecam_config##n = { \ DEVICE_DT_GET_MSI_PARENT(n) \ .cfg_addr = DT_INST_REG_ADDR(n), \ .cfg_size = DT_INST_REG_SIZE(n), \ .ranges_count = DT_NUM_RANGES(DT_DRV_INST(n)), \ .ranges = { \ DT_FOREACH_RANGE(DT_DRV_INST(n), PCIE_RANGE_FORMAT) \ }, \ }; \ DEVICE_DT_INST_DEFINE(n, &pcie_ecam_init, NULL, \ &pcie_ecam_data##n, \ &pcie_ecam_config##n, \ PRE_KERNEL_1, \ CONFIG_PCIE_INIT_PRIORITY, \ &pcie_ecam_api); DT_INST_FOREACH_STATUS_OKAY(PCIE_ECAM_INIT)